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Interpretations of Data

What does it mean when an experiment reports a 68% confidence
interval of 5± 1 MeV for some value m?

The 68% number in the confidence interval is referred to as its
coverage

Undercoverage is when a method actually covers the true value of m
less often than it’s supposed to
Overcoverage is when a method covers the true value of m more often
than it says it does
Overcovering gives a conservative interval, which we’re generally ok
with
Technically the concept of coverage only refers to the frequentist
interpretation

In all constructions, we must accurately know P(mdata|mtrue), and
this what most experimental design and calibration goes into

Roger Huang November 8, 2017 3 / 24



Frequentist Interpretation

Frequentist construction of 68% CI of 5± 1 MeV: 68% of an
ensemble of similar experiments that construct an interval using this
method will contain the true value of m in their constructed interval

Not a statement of degree of belief that m is in the given interval 4-6
MeV. The interval from any one experiment is technically meaningless
to interpret on its own
“Ensemble of experiments” → actually happens in real life with many
experiments with measurements of the same physical quantity
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Frequentist Construction - Profile Likelihood

Profile Likelihood method is used when our data depends on some
parameters of interest π, but also on nuisance parameters θ

Given observed data X of size n, the likelihood function is

L(π,θ|X ) =
n∏

i=1

f (Xi |π,θ)

Construct a likelihood ratio test statistic that is independent of the
nuisance parameters:

λ(π0|X ) =
sup[L(π0, θ|X );θ]

sup[L(π, θ|X );π, θ]

Minimize −2 log λ and treat as χ2 statistic to extract confidence
interval (Rolke Limit)
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Bayesian Interpretation

We model our beliefs about any physical value with some probability
distribution
Bayesian construction of 68% interval of 5± 1 MeV: this interval
contains 68% of the pdf we have constructed for m using our data
and some prior pdf for m

We are 68% certain that m falls in this region, having updated our
beliefs in accordance with the data
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Bayesian Construction

Must select some prior pdf for m, often chosen to be a uniform
distribution

Other choices for an “uninformed” prior exist

Posterior distribution obtained with Bayes’ Theorem:

P(mt |X ) =
L(X |mt)P(mt)∫
L(X |m)P(m)dm
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Setting Limits - A Historical Example

In 1994, the PDG weighted average of measurements of the electron
neutrino mass was m2 = (−54± 30) eV2

Naive frequentist construction (left) gives a 90% CL upper limit of
m2 < −16 eV2 - clearly unphysical
Bayesian construction (right) has intuitive way to incorporate physical
constraints - set prior pdf to be 0 for m2 < 0 and uniform for m2 > 0

Problem: what variable to set the uniform prior in? m,m2, lnm, etc.
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Adjusting Frequentist Limits

How to incorporate physical constraints into frequentist limits?

Unbounded likelihood: compute limit ignoring physical constraints. If
the limit is unphysical, increase signal events by 1 until it becomes
physical

Bounded likelihood: compute limit using increase from maximum
likelihood in physical region only, or by shifting the whole curve so
that the maximum likelihood is at the edge of the physical region

No proper justification for these adjustments, but we can accept them
because they can only make the limit worse than the “proper”
frequentist limit
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Adjusting Frequentist Limits

Example: arbitrary rare event search
Unbounded likelihood Bounded likelihood

[2]
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Performance of Bayesian vs Frequentist Limits

Differences resulting from choice of statistical method are only likely
to be significant for rare event searches or in experiments that are
setting limits due to lack of discovery

For historical reasons, frequentist methods are considered “classical”,
and so serve as a point of comparison for other methods

Bayesian methods tend to set more conservative limits in cases of
negative fluctuations, and stricter limits in case of positive fluctuation
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Performance of Bayesian vs Frequentist Limits - Dark
Photon Searches at BaBar

BaBar is an asymmetric e+e− collider at SLAC, permitting the search
for dark photons by

e+e− → γA′

Dark photon A′ invisibly decays by A′ → χχ̄, making the signature a
single photon with large missing energy/momentum

Primary backgrounds are e+e− → γγ with an escaping photon and
e+e− → e+e−γ where the electron and positron escape the detector

Signal fit with a Crystal Ball pdf centered on the expected value of
m2

A′
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Performance of Bayesian vs Frequentist Limits - Dark
Photon Searches at BaBar

Results rule out dark-photon coupling as explanation for (g − 2)µ
anomaly

[3]
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A Detailed Example: GERDA
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The GERDA Experiment

GERDA (GERmanium Detector Array) is located at underground
laboratory LNGS in Italy and is searching for 0νββ decay of 76Ge

Enriched Germanium detectors (87% 76Ge) submerged in a 64 m3

liquid argon cryostat, which is submerged in a 590 m3 water tank

66 PMTs located in the water tank and 16 low-background cryogenic
PMTs in the cryostat allow active rejection of background events

Very low background of 0.001 cts/(keV*kg*yr), and very high energy
resolution of 2.6-4.4 keV at 2.6 MeV

Current total exposure of 34.4 kg*yr
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The GERDA Experiment
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GERDA Results

[4]

Roger Huang November 8, 2017 17 / 24



GERDA Results

[4]

Performed both Frequentist and
Bayesian analysis using an
unbinned extended likelihood
function

Fit the region of interest for
each dataset with a flat
background and a Gaussian
centered at Qββ with width
corresponding to the calibrated
energy resolution

Frequentist 90% CL limit:
T 0ν
1/2 > 5.3 · 1025 yr

Bayesian 90% CI limit:
T 0ν
1/2 > 3.5 · 1025 yr
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GERDA Analysis

Likelihood function L(D|S ,BI , θ) obtained by fitting the flat
background + Gaussian to the data

D: Dataset of event energies
S: Signal rate = 1/T 0ν

1/2
BI: Background index. Total number of background events in ROI is
µB = (exposure)*(BI)*(width ∆E of ROI)
θ: Nuisance parameters with systematic uncertainties. Includes global
signal efficiency ε, energy resolution σ, and a possible systematic
energy offset δ

Total likelihood constructed as Poisson-weighted product of each
individual datasets’ likelihood functions

L(D|S ,BI , θ) =
∏
i

[
e−(µ

S
i +µ

B
i ) · (µSi + µBi )N

obs
i

Nobs
i !

· Li (Di |S ,BIi , θi )]
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GERDA Analysis - Frequentist Construction

Test statistic based on profile likelihood. ˆ̂BI , ˆ̂
θ maximize L for a given

S . Ŝ , B̂I , θ̂ give the absolute maximum for L.

tS = −2 lnλ(S) = −2 ln
L(S , ˆ̂BI , ˆ̂θ)

L(Ŝ , B̂I , θ̂)

A discrete set of possible values Sj are considered for S . For each Sj ,
possible realizations of the experiment are generated with Monte
Carlo methods. For each realization, the test statistic tSj is calculated
The p-value of the data for each Sj is given by the below, where tobs
is the test statistic of the actual data for Sj

pSj =

∫ ∞
tobs

f (tS |Sj)d(tSj )

90% CL interval given by all Sj values with pSj > 0.1 (values where
< 10% of simulated experiments had test statistic more unlikely than
the one in data)
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GERDA Analysis - Frequentist Construction

[4]
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GERDA Analysis - Bayesian Construction

Posterior pdf given by Bayes’ theorem over the combined datasets:

P(S ,BI |D, θ) ∝ L(D|S ,BI , θ)P(S)
∏
i

P(BIi )

Priors are flat pdf between 0 to 0.1 cts/(keV*kg*yr) for backgrounds
P(BIi ), and flat from 0 to 10−24/yr for signal P(S)

Nuisance parameters θ are then averaged into the final pdf with
Gaussian distributions:

< P(S |D) >=

∫
P(S |D, θ)

∏
i

g(θi )dθi

Other possible choices for flat priors: Majorana neutrino mass
(1/
√
S), scale invariance in counting rate (log S)
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Summary

Frequentist methods

Pros: “Objective” by not requiring usage of prior beliefs, so that beliefs
can be incorporated later in decision theory
Cons: Results are prone to misinterpretation due to the strangeness of
the correct way to look at them. Methods can rely on ad hoc
adjustments

Bayesian methods

Pros: Intuitive results that answer the questions we want to ask.
Straightforward and well-justified way to incorporate nuisance
parameters and physical constraints
Cons: Results depend on choice of prior pdf’s

Effects from experimental design and operation will always far
outweigh any differences from choice of statistical method

Understanding methods still important to know how to make sense of
an experiment’s results and compare against other experiments
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