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Motivation
● Bayesian statistics is an increasingly popular, though contentious, statistical 

interpretation.
● There exists confusion between Frequentist and Bayesian intervals.
● Full Bayesian treatment has been used in branching ratio studies at CDF [11], 

Higgs cross section limits [12], supersymmetry constraints[13].

Reverend Bayes. Source: wikipedia.org



Machinery of Statistics -Hypothesis Testing
● 2 or more hypotheses: H0, H1, etc. Falsely reject  H0 

with frequency α (significance level), False reject H1 
with frequency β (1- β is the power)[1].

● Perform an experiment, obtain data x. Test statistic 
t(x): characterizes deviation of x from expectation. 

○ Neyman-Pearson Lemma: Likelihood ratio λ is 
the most powerful test statistic, but often 
impractical with highly correlated data.

● Significance test: f(t | H0) is determined by data.
○  α,  β, are determined beforehand, p is an 

outcome of the experiment. 
○ p < α is criterion for rejection of H0

● Parameter determination-> ϴ to be determined.
●  Want an estimator for ϴ as well as a measure of 

uncertainty around it (in the case of a positive 
result), or simply an upper bound for a null result.



Probability and Intervals
Frequentist:

●  P(A) means that identically repeating an 
experiment an infinite number of times, event A 
is observed with frequency P(A).

● Frequentist confidence interval: True observable 
ϴ. Based on data, we set a “confidence interval,” 
which contains ϴ with a frequency (1-α).

● α: significance level. Typically either .1 or .05 for 
parameter estimation.

Bayesian:
● P(A) quantifies the reasonable expectation 

that event A will occur given all available 
information.

● Credible interval: ϴ belongs to a 
probability (belief) distribution. Based on 
the observed data a fraction (1-α) of the 
distribution is within the interval.

● prior (ᶢ) and posterior (P) distributions 
reflect our belief about a variable before 
and after the experiment

● Based on Bayes Theorem: 



More on Bayes Theorem
Why isn’t the likelihood function it’s own inverse?

Medical Example: Some test for a disease has a 10% false positive rate. The 
disease is incident in 1% of population. You test positive for the disease. How 
likely is it that you actually have the disease? 

A: 0.1 * 0.01 = 0.001

Our brains work like this, constantly updating our prior assumptions. Part of the 
reason why frequentist intervals are misinterpreted.



More on Intervals
Frequentist Interval (from PDG[1])

Vertical lines = experimental results. Horizontal lines 
= confidence interval for ϴ with area α. The location 
is controlled by either endpoint convention or 
significance tests for each point (Likelihood ratio test 
= Feldman Cousins). For complicated models, 
monte carlo is used to generate the bands.

Bayesian Intervals (source: epixanalytics.com)

Likelihood is the result of experiment P(x|ϴ) . π(x) 
is technically in the denominator but normalization 
takes care of this. The interval is chosen such that 
the area under the curve is 1-α. Doesn’t satisfy 
coverage in general, but under certain priors it 
does.



Even more comparison
Bayesian:Frequentist:



Objective vs. Subjective Bayesian Priors
● Subjective: Use all available information. 

Wears the cognitive aspects on its sleeves
○ . The uncertainties of the experiment 

are incorporated into the priors, which 
are then subject to defense.

○ Normalizable by construction.
○ Reflect biases that already exist.

● Objective: priors must be 
noninformative-minimal effect on posterior.

○ Mathematically: flat over areas of high 
likelihood, small in areas of low 
likelihood.

○ Ideally, given a certain type of data, 
everybody agrees on a type of prior, 
eliminating bias [4].

Source: Michael Kloran, kloran.com

Principles of objective Bayesian Priors [10]:
● Insufficient Reason
● Invariance
● (approximate) Coverage matching
● Maximal missing information
● Coherent
● Robust



Jeffrey’s Prior and Fischer Information
● Obj. Bayesians desire a noninformative prior.
● Dependence on reparameterization is 

considered “informative.”
● Prior is given by: 

● Where I is the Fischer Information Matrix.
○ Represents the amount of information 

carried in the data about ϴ.
○ Independent of parameterization, π(ϴ)= 

π(ϴ2), and the data x, depends only on 
likelihood function.

○

Examples: 
● Gaussian with mean  μ, spread σ:

○ uniform prior π(μ) =1.
○ π(σ) =1/σ.

● Poisson with rate parameter λ: 

● Bernoulli Trial with success probability γ:

Notice that Gaussian and poisson examples are 
improper. This is okay as long as there’s a cutoff 
(introduces bias), or the posterior is proper.



Similarities between Bayesian and Frequentist Values

● Poisson distribution: Uniform prior with a 
cutoff at ϴ = 0 and b = 0 gives the frequentist 
upper limit (b > 0 yields conservative 
/overcovered limits) 

● Symmetry of gaussian function means that 
flat priors give f(x | ϴ) = f( ϴ| x) and also 
correspond to frequentist intervals.

● Interpretation of these differ, and these only 
coincide for single dimensional parameters.

● Bernstein-von-Mises Theorem:[5] posterior 
pdf centered around mean is asymptotically 
identical to the MLE around the true value. 
Covariance matrices are likewise 
asymptotically identical.



Discrepancies between the interpretations
● Bayes Factor: To test different hypothesis, 

eliminate bias in choice of prior, divide the 
posteriors of H0, H1.

● Jeffrey-Lindley Paradox[3]: Under certain 
circumstances and choices of prior, the null 
hypothesis can be rejected by frequentist 
p-values and accepted under Bayes’ factor.

● Not actually a paradox: 
○ Can be resolved using objective priors.
○ Frequentist asks: is H0 consistent with 

data? Bayesian asks: is H0 better than 
H1 ?



Intermission: Criticism and response of Bayesians
Bayesian Criticisms:

● Subjectivity impossible to avoid.

● Coverage depends on priors [15].

● There really is one objective reality, not a 
probability distribution (veers into philosophy).

Bayesian Response:
● Assigning a probability to anything is a 

good thing.
● Reference priors achieve much (but not all) 

in the way of objectivity.
● Coverage is an imaginary construction, you 

can’t actually perform an infinite number of 
identical trials.

● More intuitive interpretation of intervals.
● Bayesian priors exclude unphysical results.

From [9]



Nuisance Parameters

● Frequentist method: “profile” the nuisances 
with the profile likelihood ratio method:

● -2lnλP Has χ2 distribution in the limit of large 
statistics (Wilk’s Theorem).

● Used as a replacement test statistic.
● Numerator (profile likelihood) used as a 

replacement likelihood in Neyman 
construction. 

Nuisance parameters define the systematic uncertainties of the experiment [6]. Any uncertain 
value that isn’t the parameter of interest is by definition a nuisance parameter. A 100% 
frequentist construction needs to achieve coverage for all values of ν. 

Bayesian method: “marginalise” the nuisances.

● Replaces the likelihood in the posterior 
distribution integral [2].

● Π is the “updated prior” after a calibration run 
(posterior to that experiment).

● Can also use a test statistic Q in place of x to 
find the distribution (used in hybrid methods- 
coming up).



Hybrid Bayesian/Frequentist Statistics
● Extended Cousins / Highland method: nuisance parameters are 

integrated over, then fed into the Neyman Construction 
(frequentist intervals).

○ Parameters of interest are treated in a frequentist fashion, uninteresting 
parameters are treated in a Bayesian fashion.

○ Nuisance pdf’s are expanded in moments (mean, variance, skew, ...)
○ Performs similarly to Bayesian limits, but is overly conservative.

● CLs Method: Use the replacement test statistic 
○ Conservative metric, “modified frequentist.”
○ Uses marginalisation over nuisance parameters
○ Asymptotically equivalent to Bayesian limits in single parameter case[7].
○ Prevents problem of setting limits better than experimental sensitivity (s << 

b).
○ Used in LHC physics and neutrino searches.



Cousins-Highland Method

CDF [8]



Sampling posterior: Markov Chain Monte Carlo
● Bayes factor integrals with improper priors often lack analytic solutions and have large 

dimensionality.
● Solution: numerical integration with MCMC.
● Uses the Metropolis-Hastings Algorithm to sample the posterior distribution.

○ Start with a sample x.
○ Propose a new sample x’ bases on jumping distribution Q(x’|x).
○ If posterior  f(x’ | y) > f(x | y), accept it. Otherwise, accept it with frequency f(x’|y)/ f(x|y).
○ Continue until desired trace length filled.

● Issues:
○ Usually start far from minimum. Solution: Throw away the first N samples, called “burn-in.”
○ Xn correlated with xn+1, so we “thin” the trace by stepping through in steps of length d.
○ Sometimes the Q(x’|x) is altered on the fly to improve acceptance ratio. “Simulated annealing.”

● Implemented in the PyMC package with huge configurability.



MCMC, continued.

From [16]
From pymc-devs.github.io



Application - Bayesian Blocks
● Selects nonuniform bin widths for histograms.

○ Useful on log plots where be become Poisson-dominated.

● Goes through blocks, maximizes the fitness of the bin edges.
○ Fitness determined through Cash statistic N ln λ-λT, which is similar to χ2 but works better for 

low counts/bin.

● A prior on the number of blocks penalizes overfitting.
● “Bayesian” because it iteratively updates the likelihood and has a prior.
● Implementation found in python package Astro-ML

Source: [15]



Application - Kalman Filter
● Imprecise phase space measurements (some 

uncertainty)
● Use stream of incoming data to predict next 

step (prior distribution).
○ Underlying Markovian process.

● Compare to reality and update the model 
(posterior distribution).

● Gets a better idea of state than single 
measurement precision alone.

Overlap of prediction and sensor 
estimates in a Kalman filter. 
Source: bzarg.org.



Summary

● Bayesian statistics uses a differing definition 
of probability to approach the same problems 
as classical statistics.

● Has intuitive interpretations of both limits and 
straightforward handling of nuisance 
parameters.

● It is subjective, at times mathematically 
inelegant, and fails to have coverage 
properties.

● Bayesians say that these aren’t really 
problems, and frequentists have incorporated 
Bayesian strategies into hybrid methods.
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