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The 3ν paradigm
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Sterile neutrino motivation

Why consider sterile 
neutrinos?

● GUT scale: RH sterile 
neutrinos generate light 
ν masses via seesaw 
mechanism

● keV scale: Dark matter 
candidate

● eV scale (this talk): 
Explain various 
experimental anomalies

|Δm2
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| = 2.3x10-3 eV2

Δm2
21

 = 7.5x10-5 eV2
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| > 1 eV2
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Sterile neutrino evidence
Accelerator: Anomalous ν

e 

appearance in ν
μ
 beam (LSND, 

MiniBooNE)

Reactor: 6% deficit in observed 
flux vs. latest calculations 
(Huber-Mueller model)

Isotopes: Disappearance of ν
e
 

from gallium decays
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Daya Bay experiment

An optimized design:

● High statistics: Powerful 
reactors, multiple large 
detectors

● Low background: Deep 
overburden

● Low systematics: 
Near/far measurement 
cancels reactor and 
efficiency uncertainties

● Good fortune: Far hall at 
disappearance maximum
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Detecting antineutrinos

Antineutrinos are detected via inverse β decay:

The neutron is captured on Gd (H) after an average of 
28 (180) μs. Coincident pulses provide a clean 
experimental signature, where E

ν
 = K

e+
 + 1.8 MeV
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Near/far analysis

Eneutrino

E
neutrino

E
vis

E
vis

E
neutrino

Eneutrino

Observed near-site data 
(bg. and eff. corrected)

For each bin in E
vis

, predict true
energy distribution (using

nonlinearity, resolution… etc)

Separate spectrum into 
reactor components Extrapolate to far

site (1/L2 and
oscillation effects)

Sum all
components

Integrate into
original Evis bin

Predicted
far-site data

All 8 ADs are functionally identical.

Thus, from using near site data to predict the far site 
spectrum, we get cancellation of detection efficiency 
uncertainties, as well as reactor systematics.
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Dataset
This analysis [PRL 117, 151802 (2016)]:

217 (404) days of 6-AD (8-AD) data
→ 3.6x statistics vs. previous publication

Improved energy calibration, background reduction

Neutron capture on Gd (lowest systematics)
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3ν oscillation results

By comparing the far site (EH3) to the two near sites (EH1, EH2), we perform a 2D 
rate+shape fit to determine θ

13
 and Δm2

ee

Now, what happens if we include a fourth neutrino in the fit?...
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Adding a fourth neutrino

Introduction
• If exists, Daya Bay would see additional rate and spectral 

distortion from sterile neutrinos
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Instead of using EH1+EH2 to predict EH3, we use EH1 to predict EH2 
(for larger |Δm2|) and EH1 to predict EH3 (for smaller |Δm2|), while using 
a modified oscillation expression:

Under 3ν hypothesis, p-value for observed Δχ2 is 0.4

No apparent sterile neutrino signature
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Sterile neutrino limits

Two independent analyses:

1) Near/far analysis. Calculate
χ2 using covariance matrix 
derived from toy MC.

Set limits using Feldman-
Cousins

2) Use reactor model for all 
predictions. Calculate χ2 using 
explicit nuisance parameters.

Set limits using Gaussian CL
s

Results consistent with each other 
and with MC expectation!

World-leading limits for
|Δm2

41
| ε [0.0002, 0.2] eV2

Δm2
31 

degeneracy

PRL 117, 151802 (2016)
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MINOS and Bugey-3
Complementary datasets: Synergy in combination with Daya Bay!

3 GeV ν
μ
, 1 + 734 km baseline

Sensitivity out to 102 eV2

Reactor ν
e
, short baseline (15/40/95 m)

Sensitivity to 0.3 – 3 eV2

Nucl. Phys. B 434, 503 (1995) PRL 117, 151801 (2016)

BUGEY-3

BUGEY-3 MINOS
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Combined results
Combine Daya Bay and Bugey-3* 
data to obtain Δχ2 across (sin22θ

14
, 

Δm2
41

) plane

From MINOS, get Δχ2 across
(sin2θ

24
, Δm2

41
) plane

For each point in (sin22θ
14

, sin2θ
24

, 
Δm2

41
) space, add the two Δχ2‘s, 

calculate CL
s
 from simulation

Get CL
s
 in (sin22θ

μe
, Δm2

41
) plane by 

conservatively taking largest CL
s 

among possible combos of sin22θ
14 

and sin2θ
24

→ Exclude LSND/MiniBooNE 
allowed region for |Δm2|

 
< 0.8 eV2 

at 95% CL
s
!

sin22θ
μe

 ≡ sin22θ
14 

sin2θ
24

PRL 117, 151801 (2016)

* Updated due to change in
* measured neutron lifetime
* and latest reactor models
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Conclusion
● Daya Bay finds no evidence of sterile neutrino mixing for

|Δm2
41| ε [0.0002, 0.3] eV2

– Most stringent constraints to date below 0.2 eV2

– Another 2x in improvement in sensitivity using data up to 2017

● In combination with MINOS and Bugey-3, strong limits are set on 
sin22θμe for |Δm2

41| ε [0.0002, 100] eV2

● LSND/MiniBooNE allowed regions for |Δm2
41| < 0.8 eV2 are excluded 

at 95% CLs

● We’ve discussed a relative analysis. We also have an absolute 
analysis based on comparing flux to reactor predictions. Deficit is only 
seen for U-235 component, providing further evidence against an eV-
scale sterile neutrino
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Thanks!



2017 Oct 11 290E, Berkeley 16 of 16

Both methods are suitable for Daya Bay. Good for cross-checking.

Limit setting
Feldman-Cousins

● “Statistically rigorous” – Well-defined frequentist 
interpretation of limits/intervals

● Based on Neyman construction w/ FC ordering rule
● Computationally expensive – Many ToyMCs
● Can set overly aggressive limits in background-

dominated situations

CL
s

● No well-defined frequentist interpretation
● Based on one-sided exclusion regions w/ “penalty” for 

overlap of background distribution
● Allows approximations for fast computation
● Easier for combining data from multiple experiments
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