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Why Monte Carlo Methods?

• Monte Carlo methods use random numbers to solve problems
that are not tractable in other ways

• Examples of use of Monte Carlo methods:
I Integration of a complicated function
I Creation of simulated “events” according to a specific physics

model
I Creation of an ensemble of outcomes to determine statistical

properties

• Monte Carlo programs sample outcomes, drawing from
defined probability distributions

I Often multidimensional
I Sometimes not solvable analytically
I Underlying physics can either be probabilistic or quantum

mechanical
• But method always makes approximation that the process can

be described as individual “events”



Random Numbers (I)

• True random number generation comves from physical
processes, eg

I White noise
I Radioactive decay

• Most computational methods rely on pseudorandom number
generators

I Algorithms that produce a sequence of numbers with no
measurable correlations

I Sequence determined by an initial input of one or more seeds
• Same seed always yields same sequence
• Results of computation can therefore be repeated

I Eventually random number sequence will repeat
• Will limit how many numbers can be drawn in a given

calculation
I Depending on algorithm used to draw random numbers,

patterns can emerge
• Depends on the number of dimensions of interest and the

sequence of numbers
• George Marsaglia (1968). ”Random numbers fall mainly in

the planes” (PDF). PNAS. 61 (1): 2528.



Random Numbers (II)

• An example (from Wikipedia) pseudorandom number
generator (linear congruential generator)

Xn+1 = (aXn + b) mod m

where a, b and m are large integers.
I Series can produce at most m− 1 numbers before repeating

Warning: Do NOT use this for simulating events (see next slide)

• Can turn the integer X into a float: X/m
I Standard element of the toolkit: Uniform random number

between 0 and 1
I Supplied as part of most programming languages
I But better to use a know quantity with documented

performance

• Starting from uniform random number generator, can develop
one to throw events with whatever distribution you wish





An Example: TRandom in Root



Probability: Basic Definitions and Axioms

• Probability P is a real-valued function defined by axioms:
1. For every subset A in S, P (A) > 0
2. For disjoint subsets (A ∩B = 0), P (A ∪B) = P (A) + P (B)
3. P (S) = 1

• Bayes Theorem:
(Conditional Probability P (A|B) ≡ prob of A given B)

P (A|B) =
P (B|A)P (A)

P (B)

• Law of Total Probability

P (B) =
∑
i

P (B|A)P (Ai)

• Together these give:

P (A|B) =
P (B|A)P (A)∑
i P (B|Ai)P (Ai)



Probability: Random variables and PDFs

• For continuous variable x, probability density function (pdf):
I f(x; θ) ≡ prob that x lies between x and x+ dx
I θ represents one or more parameters

Won’t always carry θ along

• Cumulative probability

F (a) =

∫ a

−∞
f(x)dx

Probability that x < a.

• For discrete variables, replace integral with sum

• For any function u(x), expectation value:

E[u(x)] ≡ 〈u(x)〉 =
∫ ∞
−∞

u(x)f(x)dx



PDF Moments: Mean and Variance

• Mean value:

µ ≡
∫ ∞
−∞

xf(x)dx

• Variance:

σ2 ≡ V ar(x) =
∫ ∞
−∞

x2f(x)dx− µ2

σ is called the “standard deviation.”

These basic definitions are used essentially
everywhere. If we know the pdf, we know

how to determine the mean and σ



Normal (Gaussian) Distribution

Theorem (Central Limit Theorem)

Given random sample (x1, x2, ...xn) drawn from pdf with mean µ
and variance σ, if mean is S/n = 1/n

∑n
1 xi, distribution of S/n

approaches normal distribution as n→∞ independent of pdf

f(x;µ, σ) =
1

σ
√
2π
e−

(x−µ)2

2σ2

Gaussian PDF Gaussian Cumulative PDF



Generating numbers that follow a specified distribution:
Analytic Solution

• Consider observable dN/dx

• Can define PDF:

f(x) =
dN/dx∫ xmax

xmin
dN/dx

• By construction∫ xmax

xmin

f(x)dx = 1

• Prob x is between x1 and x2 is:∫ x2

x1

f(x)dx

• Prob is uniformly distributed in

F (x) ≡
∫ xf(x)

xmin

dx

• Thus, for integrable functions, can do

the following
I Pick a random number r
I Define this to be the value of
F (x)

I Find value of x by inverting

F (x) = r

x = F−1(r)

• Example:
I Let f(x) = 2x
I Then y = F (y)

∫ x
0 2x′dx′ = x2

I If y randomly chosen, desired
distribution f(x) obtained with

x = y
1
2

Try it at home!



Introduction to Acceptance/Rejection Method



Generating numbers that follow a specified distribution:
Acceptance/Rejection

• If we plot PDF, then area under curve gives the probability

• Using same method as previous page, can “sample” the distribution by
throwing 2D points randomly and asking whether they are above or below
the curve

• Only keep points below the curve, keeping track of fraction kept

http://www.drcruzan.com/NumericalIntegration.html

I Keep events corresponding to
green dots

I Throw out events events

corresponding to black dots

• Distribution of kept points gives our PDF

• Can generalize to many dimensions trivially by throwing more random
numbers



Improving Acceptance/Rejection: Importance Sampling

• Acceptance/Rejection can be very inefficient if PDF has regions of very low
probability

• Can we reduce number of times we reject points?

• One option:
I Enclose PDF with envelope whose PDF (≡ g(x)) is analytically calculable

and use

P (A|B) =
P (B|A)P (A)

P (B)

T. Sjostrand



Improving Importance Sampling: Learning the Distribution

• For complicated functions, difficult for find an appropriate
g(x)

• Can place the function on a grid (can be multidimensional)
I Each element of the grid has its own constant weight
I Make first guess of the weights (eg phase space)
I Generate some events (which you will throw away)

• Use these events to refine your weights

I Iterate if necessary
I Can also change grid boundaries in each iteration depending

on how fast function varies

• Such adaptive grids are used in majority of modern event
generators

• Canned packages to do much of the heavy lifting exit
I Vegas Monte Carlo algorithm developed by G.P. Lepage
I GNU scientific library provides an implementation of Vegas



Using Monte Carlos for Event Generation or Simulation

• Use the ideas above the generate complicated events.

• Examples:
I Trace history of propagation of an object as it interacts with

matter
I Approximate quantum mechanical processes by probabilistic

branching processes
I Model interaction of many particles by tracking them all as

they interact with each other

• In all cases, need to store history as repeated interactions
occur

I Each event involves multiple instances of random process

• We’ll look at a few examples relevant for particle physics here



Example: Modeling Particle Interactions in a Calorimeter

  

Electromagnetic 
shower

Hadronic
 shower

• Calormeters are blocks of matter that:

I Degrade the energy of particles through their interactions with matter
I Are instrumented to detect the ionization and de-excitation of excited

states through conversion to electronic signals

I Measure signal of a magnitude that depends on energy of incident particle



Electromagnetic Interactions: Radiation Length

• Definitions:

I Mean distance over which a high-energy electron looses all but
1/e of its energy due to bremmsstahlung

I 7/9 of the mean free path for pair production from a high
energy photon

I Units can be either cm or g/cm2 (use density to convert)

• From Particle Data Group review:

1

X0
= 4αr2e

NA

A

{
Z2 [Lrad − f(Z)] + ZL′

rad

}
where for A = 1 g/mol, 4αr2e

NA

A = 716.408 g/cm2; L and L′

depend on the properties of the material

• A good approximation is

1

X0
= Z(Z + 1)

ρ

A

ln(287/Z0.3)

716 g/cm
3



Longitudinal and Transverse Shower Development

• High energy e or γ incident on absorber
initiates a cascade of secondary e and γ

• Cascade from to

I Bremsstrahlung (e→ eγ)

I Pair production (γ → e+e−)

• This continues until electrons fall below
critical energy Ec

• Transverse size set by Moliere radius

RM = X0 (21 MeV/EC)

• For lead: X0 = 0.56 cm, RM = 1.53 cm

dE

dt
= E0b

(bt)a−1e−bt

Γ(a)

where t is depth in radiation lengths

tmax = (a− 1)/b



Example: Simple Event Generation

• Study process
e+e− → µ+µ−

in CM with center-of-mass energy Ecm, ignoring weak interaction and
QED corrections and assuming unpolarized beams

• Outgoing muons back-to-back
I ~pµ+ = −~pµ−
I Muon Energy E = Ecm/2 (know |~p| since mµ known)
I Angular distribution

dN

dΩ
=
(
1 + cos2 θ

)
d cos θdφ

• Unpolarized beam: φ distribution flat between 0 and 2π

I Draw φ from 2πr where r random number between 0 and 1

• Draw cos θ from distribution 1 + x2

I Normalize so that integral =1
I Can divide into two terms where relative rates of each set by the

normalization
I Solve by throwing dice to select between the two terms and then throwing

agains the distribution for the selected term

I Analytic technique discussed above works



Example: A More Difficult Event Generation Task

• Now consider
e+e− → hadrons

What is different from the previous example?
I Start with e+e− → qq
I Quarks radiate gluons

• This gluon treated as part of the ”hard scattering” calculation
• Must decide when we can resolve a gluon: Angular and energy cuts
• With this definition, can separate into 2 parton and 3 parton events
• Two parton case: quarks have same distribution as previous page
• Three parton case: use QCD calculation to divide energy and

determine angles

• The calculation is more complicated, but method pretty much the

same as previous example
I Quarks dress themselves as hadrons

• We need to add some new physics for this
• See next slides

• Note: we always do our MC generation using probabilitistic language
I Quantum effects can be included in the calculation of the cross section

(the pdf for the hard scattering)
I Or (approximately) through the modeling of the hadronization

(string effects, angular ordering, etc)



Hadronization as a Showering Process

• Similar description to the EM shower that you modeled in HW# 1
I Quarks radiate gluons
I Gluons make qq pairs, and can also radiate gluons

• Must in the end produce color singlets
I Nearby q and q combine to form clusters or hadrons
I Clusters or hadrons then can decay

• Warning: Picture does not make topology of the production clear
I Gluon radiation peaked in direction of initial partons
I Expect collimated “jets” of particles following initial partons



QCD at Many scales

• Impulse approximation

I Short time scale hard scattering (EM interaction in this case)
I Perturbative QCD corrections (will discuss next time)

I Long time scale hadronization process

• Approach to the hadronization:

I Describe distributions individual hadrons statistically

I Collect hadrons together to approximate the properties of the quarks and

gluons they came from

Describe non-perturbative effects using a phenomonological model



Hadronization and Fragmentation Functions

• Define distribution of hadrons using a “fragmentation function”:

I Suppose we want to describe e+e− → h X where h is a specific
particle (eg π−)

I Need probability that a q or q will fragment into h
I Define Dhq (z) as probability that a quark q will fragment to form a hadron

that carries fraction z = Eh/Eq of the initial quark energy
I We cannot predict Dhq (z)

• Measure them in one process and then ask are they universal

• These Dh
q (z) are essential for Monte Carlo programs used to predict the

hadron level output of a given experiment (“engineering numbers”)

• But in the end, what we really care about is how to combine the hadrons
to learn about the quarks and gluons they came from



Fragmentation Functions Measured in e+e− Annihilation

0.01
0.03

0.1
0.3

1
3

10
30

100
300

1/
σ ha

d 
dσ

/d
x

π± (√s = 91 GeV)
π± (√s = 29 GeV)
π± (√s = 10 GeV)

(a)

0.01

0.03

0.1

0.3

1

3

10

30

1/
σ ha

d 
dσ

/d
x

K± (√s = 91 GeV)
K± (√s = 29 GeV)
K± (√s = 10 GeV)

(b)

0.01

0.03

0.1

0.3

1

3

10

30

0.005 0.01 0.02 0.05 0.1 0.2 0.5 1
xp = p/pbeam

1/
σ ha

d 
dσ

/d
x

p,
 _
p (√s = 91 GeV)

p,
 _
p (√s = 29 GeV)

p,
 _
p (√s = 10 GeV)

(c)

• Once momentum of hadron well above its

mass, Dhq (z) almost independent of
√
s

I Fragmentation functions exhibit scaling with

logrithmic dependence on
√
s

• Overall charged multiplicity

< Nh >=

∫ 1

zmin

F (z)dz

• A common parameterization of F (z):

F (z) = N
(1− z)n

z

where n is a fitted parameter

• For this parameterization

< N >= (n + 1) < z >



Another Way of Thinking About Hadronization

• q and q move in opposite directions, creating a color dipole field

• Color Dipole looks different from familiar electric dipole:
I Confinement: At low q2 quarks become confined to hadrons
I Scale for this confinement, hadronic mass scale: Λ = few 100 MeV
I Coherent effects from multiple gluon emission shield color field far from

the colored q and q

I Instead of extending through all space, color dipole field is flux tube with

limited transverse extent

• Gauss’s law in one dimensional field: E independent of x and thus

V (x1 − x2) = k(x1 − x2) where k is a property of the QCD field (often called

the “string tension”)
I Experimentally, k = 1 GeV/fm = 0.2 GeV−2

I As the q and q separate, the energy in the color field becomes large
enough that qq pair production can occur

I This process continues multiple times

I Neighboring qq pairs combine to form hadrons



Color Flux Tubes

• Particle production is a stocastic process: the pair production can occur
anywhere along the color field

• Quantum numbers are conserved locally in the pair production

• Appearence of the q and q is a quantum tunneling phenomenon: qq separate
eating the color field and appear as physical particles



Jet Production

• Probability for producing pair depends
quark masses

Prob ∝ e−m
2/k

relative rates of popping different flavors
from the field are
u : d : s : c = 1 : 1 : 0.37 : 10−10

• Limited momentum tranverve to qq axis
I If q and q each have tranverse

momentum ∼ Λ (think of this as
the sigma) the mesons will have
∼
√

2Λ
I Meson transverse momentum (at

lowest order) independent of qq
center of mass energy

I As Ecm increases, the hadrons

collimate: “jets”



Characterizing hadronization using e+e− data:
Limited Transverse Momentum

• q and q move in opposite

directions, creating a color dipole

field

I Confinement limits transverse

dimensions of the field

• Limited pT wrt jet axis

I
√
< p2T > ∼ 350 MeV

I Well described by Gaussian

distribution

• Range of longitudinal momenta



Event Generation: General Strategy

• From defined physics process, select hard scattering
configuration

• If quarks and gluons in final state, specify color structure

• Add any additional gluon radiation or gluon splitting to quarks
not included in hard scattering calculation

• Use showering scheme to turn quarks and gluons into hadrons

• Decay the hadrons (again using MC technique to choose
among possible decay modes and to select configuration of
decay products)

That covers e+e−



What else is needed for hadron collisions (or ep)?

• Protons composite objects
I Hard scattering involves quarks and gluons inside proton:

Select initial parton momenta using parton distribution
functions
• Must include q2 dependence of parton distributions

I Partons rescatter during collision process
• MPI (multiparton interactions)

• Remanents of proton must also be turned into hadrons
I Act like two jets going down beampipe in opposite directions

• Intial as well as final state partons can undergo additional
QCD radiation of gluons (ISR, FSR)

• More complicated color structure possible



Putting it all together
(a picture from the Sherpa MC team)



One Last Example: Estimating Uncertainties

• Analysis often involves studies of complicated distributions
with many correlated variables

• Goal is to constrain parameters associated with a model or
theory that describes the data

• Not only do we want the best value of the parameters, we also
want the uncertainty on our estimate

• Both statistical and systematic uncertainties present

• Often MC techniques used to estimate uncertainty

• Use “toy Monte Carlo” samples with distributions chosen to
match data, including statistical uncertainties and systematic
variations

• Can determine confidence level using such procedure

• Similar techniques used for setting limits

We’ll hear more about this in some of the upcoming student talks


