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Why Monte Carlo Methods?

e Monte Carlo methods use random numbers to solve problems
that are not tractable in other ways
e Examples of use of Monte Carlo methods:
> Integration of a complicated function
» Creation of simulated “events” according to a specific physics
model
» Creation of an ensemble of outcomes to determine statistical
properties
e Monte Carlo programs sample outcomes, drawing from
defined probability distributions
» Often multidimensional
» Sometimes not solvable analytically
» Underlying physics can either be probabilistic or quantum
mechanical
e But method always makes approximation that the process can
be described as individual “events”



Random Numbers (1)

e True random number generation comves from physical
processes, eg
» White noise
» Radioactive decay
e Most computational methods rely on pseudorandom number
generators
» Algorithms that produce a sequence of numbers with no
measurable correlations
» Sequence determined by an initial input of one or more seeds
e Same seed always yields same sequence
e Results of computation can therefore be repeated
» Eventually random number sequence will repeat
e Will limit how many numbers can be drawn in a given
calculation
» Depending on algorithm used to draw random numbers,
patterns can emerge
e Depends on the number of dimensions of interest and the
sequence of numbers
e George Marsaglia (1968). "Random numbers fall mainly in
the planes” (PDF). PNAS. 61 (1): 2528.



Random Numbers (11)

e An example (from Wikipedia) pseudorandom number
generator (linear congruential generator)

Xnt1 = (aX, +b) modm

where a, b and m are large integers.
» Series can produce at most m — 1 numbers before repeating

Warning: Do NOT use this for simulating events (see next slide)

e Can turn the integer X into a float: X/m
» Standard element of the toolkit: Uniform random number
between 0 and 1
» Supplied as part of most programming languages
» But better to use a know quantity with documented
performance

e Starting from uniform random number generator, can develop
one to throw events with whatever distribution you wish



The Marsaglia Effect

2D-array: white if R < 0.5, black if R > 0.5:

Marsaglia: recursion = multiplets (Rmi, Rmi+1, - s Rmitm—1),
i=1,2,..., fall on parallel planes in m-dimensional hypercube.
A small m spells disaster. Don't play on your own!
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An Example: TRandom in Root

TRandom Class Reference

Math » MathCore » Random Classes

This is the base class for the ROOT Random number generators.

This class defines the ROOT Random number interface and it should
not be instantiated directly but used via its derived classes (e.g.
TRandoml, TRandom2 or TRandom3). Note that this class
implements also a very simple generator (linear congruential) with
periodicity = 10**9 which is known to have defects (the lower random
bits are correlated) and therefore should NOT be used in any statistical
study. One should use instead TRandoem1, TRandom2 or TRandom3.
TRandom3, is based on the "Mersenne Twister generator”, and is the
recommended one, since it has good random proprieties (period of
about 10**6000 ) and it is fast. TRandom1, based on the RANLUX
algorithm, has mathematically proven random proprieties and a period
of about 10**171. It is however slower than the others. TRandom2, is
based on the Tausworthe generator of L'Ecuyer, and it has the
advantage of being fast and using only 3 words (of 32 bits) for the
state. The period is 10%*26.



Probability: Basic Definitions and Axioms

e Probability P is a real-valued function defined by axioms:
1. For every subset A in S, P(A) >0
2. For disjoint subsets (AN B =0), P(AUB) = P(A) + P(B)
3. P(S)=1
e Bayes Theorem:
(Conditional Probability P(A|B) = prob of A given B)
P(BJA)P(A)
PR =""pm)

e Law of Total Probability
P(B) =) P(B|A)P(4;)

e Together these give:

 P(BlA)P(A)
PAIB) = & Py plA)



Probability: Random variables and PDFs

e For continuous variable z, probability density function (pdf):

» f(x;0) = prob that x lies between x and x + dz
» 6 represents one or more parameters
Won't always carry 6 along

e Cumulative probability

F(a) = /_ Oo f(2)dz

Probability that = < a.
o For discrete variables, replace integral with sum

e For any function u(z), expectation value:



PDF Moments: Mean and Variance

e Mean value:

w= /OO xf(x)dx

e Variance:
o? =Var(z) = / 2 f(x)dr — p?

o is called the “standard deviation.”

These basic definitions are used essentially
everywhere. If we know the pdf, we know
how to determine the mean and o



Normal (Gaussian) Distribution

Theorem (Central Limit Theorem)

Given random sample (x1, xo, ...xy,) drawn from pdf with mean p
and variance o, if mean is S/n = 1/n | x;, distribution of S/n
approaches normal distribution as n — oo independent of pdf

1 _(e-p)?
Tip,o) = e 27
flz;p,0) —

Gaussian PDF Gaussian Cumulative PDF
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Generating numbers that follow a specified distribution:

Analytic Solution

® Consider observable dN/dx ® Thus, for integrable functions, can do
® Can define PDF: the following
> Pick a random number r
_ dN/dx > Define this to be the value of
F(@) = Faman
Jomes dN/dx F(x)

> Find value of z by inverting

® By construction (@)
F(z = r

/zmaz e =1 z = F ()

® Example:
> Let f(z) =2z
z2 > Theny = F(y) [y 2¢'ds’ = z?
/ f(z)d > If y randomly chosen, desired
o distribution f(x) obtained with
1

Prob x is between x1 and x5 is:

® Prob is uniformly distributed in r=y2

Try it at home!
zf(x)
F(x) = / dx
x

min



Introduction to Acceptance/Rejection Method
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@ Pick x coordinate at random between horizontal limits.
@ Pick y coordinate at random between vertical limits.
© Find whether point is inside Swiss border.

@ Repeat many times and keep statistics.

#inside

Area = width x height x ZEtrios
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Generating numbers that follow a specified distribution:

Acceptance/Rejection

® |f we plot PDF, then area under curve gives the probability

® Using same method as previous page, can “sample” the distribution by
throwing 2D points randomly and asking whether they are above or below
the curve

® Only keep points below the curve, keeping track of fraction kept

y
P

20| f(x)
™~ .
» Keep events corresponding to
green dots

» Throw out events events
corresponding to black dots

X

»
o

http://www.drcruzan.com/Numericallntegration.html

® Distribution of kept points gives our PDF

e Can generalize to many dimensions trivially by throwing more random
numbers



jection: Importance Sampling

® Acceptance/Rejection can be very inefficient if PDF has regions of very low

probability

® Can we reduce number of times we reject points?

® One option:

» Enclose PDF with envelope whose PDF (= g(z)) is analytically calculable

and use

Y2 1

U1

_ P(B|A)P(A)
P(A|B) = —FE
)
g(zx)
jected
pted
T
Tmin T Tmax

T. Sjostrand



Improving Importance Sampling: Learning the Distribution

e For complicated functions, difficult for find an appropriate
g(x)
e Can place the function on a grid (can be multidimensional)

» Each element of the grid has its own constant weight
» Make first guess of the weights (eg phase space)
» Generate some events (which you will throw away)

e Use these events to refine your weights
» lterate if necessary
» Can also change grid boundaries in each iteration depending
on how fast function varies
e Such adaptive grids are used in majority of modern event
generators
e Canned packages to do much of the heavy lifting exit

» Vegas Monte Carlo algorithm developed by G.P. Lepage
» GNU scientific library provides an implementation of Vegas



Using Monte Carlos for Event Generation or Simulation

Use the ideas above the generate complicated events.

Examples:
» Trace history of propagation of an object as it interacts with
matter
» Approximate quantum mechanical processes by probabilistic
branching processes
» Model interaction of many particles by tracking them all as
they interact with each other

In all cases, need to store history as repeated interactions
occur

» Each event involves multiple instances of random process

We'll look at a few examples relevant for particle physics here



Example: Modeling Particle Interactions in a Calorimeter

Fe
Electromagnetic
shower

2cm
—

—— |1 Hadronic
shower

® Calormeters are blocks of matter that:
> Degrade the energy of particles through their interactions with matter
> Are instrumented to detect the ionization and de-excitation of excited
states through conversion to electronic signals
> Measure signal of a magnitude that depends on energy of incident particle



Electromagnetic Interactions: Radiation Length

e Definitions:

» Mean distance over which a high-energy electron looses all but
1/e of its energy due to bremmsstahlung

» 7/9 of the mean free path for pair production from a high
energy photon

» Units can be either cm or g/cm? (use density to convert)

e From Particle Data Group review:

1 N

— =dar?=A A2 [Lraa = F(D) + 2L}
Xo

where for A =1 g/mol, dar? ¥4 = 716.408 g/cm?; L and L’

depend on the properties of the material

e A good approximation is

0.3
1 207+ 1)E111(287/Z 3)
Xo A 716 g/cm



Longitudinal and Transverse Shower Development

® High energy e or v incident on absorber g
initiates a cascade of secondary e and ~y /f' B
LA
e Cascade from to WYaYLY, v L’< .
e
> Bremsstrahlung (e — ev) Y
v
> Pair production (7 — ete™) VW
® This continues until electrons fall below Y
critical energy E.
® Transverse size set by Moliere radius ®
_ 0125y T T = 100
Ry = Xo (21 MeV/Ec) : . vl E
0100 ncident oniron 180 g
® For lead: Xg =0.56 cm, Ry = 1.53 cm . E 1 =
S 0075 - 60 .g
a—1_—bt = 1 &
dE :Eob(bt) € < oo f :405
dt I'(a) =} ] £
0.025 C an Z
where t is depth in radiation lengths Omj .

] 5 10 15 20
= depth in radiation lengths

tmaz = (@ —1)/b



Example: Simple Event Generation

® Study process
+

e'e — ,tﬁ,zf
in CM with center-of-mass energy Ecn,, ignoring weak interaction and
QED corrections and assuming unpolarized beams

® Qutgoing muons back-to-back
> p + = —p —
> Muon Energy E = Ecm /2 (know |p] since m,, known)
» Angular distribution
dN

o) (1 + cos 9) d cos 0d¢p

® Unpolarized beam: ¢ distribution flat between 0 and 27
» Draw ¢ from 27r where r random number between 0 and 1

e Draw cos @ from distribution 1 + 22

> Normalize so that integral =1
» Can divide into two terms where relative rates of each set by the

normalization
> Solve by throwing dice to select between the two terms and then throwing

agains the distribution for the selected term

> Analytic technique discussed above works



Example: A More Difficult Event Generation Task

® Now consider

ete™ — hadrons

What is different from the previous example?
> Start with eTe™ — g
> Quarks radiate gluons

This gluon treated as part of the "hard scattering” calculation
Must decide when we can resolve a gluon: Angular and energy cuts
With this definition, can separate into 2 parton and 3 parton events
Two parton case: quarks have same distribution as previous page
Three parton case: use QCD calculation to divide energy and
determine angles

The calculation is more complicated, but method pretty much the
same as previous example

» Quarks dress themselves as hadrons

We need to add some new physics for this
See next slides

® Note: we always do our MC generation using probabilitistic language
» Quantum effects can be included in the calculation of the cross section
(the pdf for the hard scattering)
> Or (approximately) through the modeling of the hadronization

(string effects, angular ordering, etc)



Hadronization as a Showering Process

e Similar description to the EM shower that you modeled in HW# 1
» Quarks radiate gluons
» Gluons make ¢q pairs, and can also radiate gluons

e Must in the end produce color singlets
» Nearby ¢ and § combine to form clusters or hadrons
» Clusters or hadrons then can decay

e Warning: Picture does not make topology of the production clear
» Gluon radiation peaked in direction of initial partons
> Expect collimated “jets” of particles following initial partons



QCD at Many scales
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® Impulse approximation

» Short time scale hard scattering (EM interaction in this case)
> Perturbative QCD corrections (will discuss next time)

» Long time scale hadronization process

® Approach to the hadronization:
» Describe distributions individual hadrons statistically
» Collect hadrons together to approximate the properties of the quarks and

gluons they came from

Describe non-perturbative effects using a phenomonological model



Hadronization and Fragmentation Functi

® Define distribution of hadrons using a “fragmentation function”:
> Suppose we want to describe ete™ — h X where h is a specific
particle (eg 77)
> Need probability that a ¢ or g will fragment into h
> Define Dg (z) as probability that a quark g will fragment to form a hadron
that carries fraction z = E}, /Eq4 of the initial quark energy
> We cannot predict D(’;(z)

® Measure them in one process and then ask are they universal

® These Dg(z) are essential for Monte Carlo programs used to predict the
hadron level output of a given experiment ( “engineering numbers”)

® But in the end, what we really care about is how to combine the hadrons
to learn about the quarks and gluons they came from



Fragmentation Functions Measured in eTe™ Annihilation
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Another Way of Thinking ut Hadronization

QCD

® ¢ and § move in opposite directions, creating a color dipole field

® Color Dipole looks different from familiar electric dipole:

>
>
>

Confinement: At low g2 quarks become confined to hadrons

Scale for this confinement, hadronic mass scale: A = few 100 MeV
Coherent effects from multiple gluon emission shield color field far from
the colored g and g

Instead of extending through all space, color dipole field is flux tube with

limited transverse extent

® Gauss's law in one dimensional field: E independent of z and thus
V(z1 — z2) = k(x1 — x2) where k is a property of the QCD field (often called

the “string tension”)

>
>

Experimentally, k = 1 GeV/fm = 0.2 GeV 2
As the ¢ and g separate, the energy in the color field becomes large
enough that gg pair production can occur

» This process continues multiple times

Neighboring ¢q pairs combine to form hadrons



Color Flux Tubes
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® Particle production is a stocastic process: the pair production can occur
anywhere along the color field

® Quantum numbers are conserved locally in the pair production

® Appearence of the ¢ and g is a quantum tunneling phenomenon: ¢q separate
eating the color field and appear as physical particles



Jet Production

® Probability for producing pair depends
quark masses

Prob o efm2/k

relative rates of popping different flavors
from the field are
w:d:s:c=1:1:0.37:10"10

® Limited momentum tranverve to ¢q axis

> If ¢ and g each have tranverse
momentum ~ A (think of this as
the sigma) the mesons will have
~ V2A

> Meson transverse momentum (at
lowest order) independent of ¢q
center of mass energy

» As FE.n, increases, the hadrons

collimate: “jets”



Characterizing hadronization using ete™ data:
Limited Transverse Momentum

® ¢ and § move in opposite ; r o . |
directions, creating a color dipole ~ § . B . :
field E :
> Confinement limits transverse v o :

dimensions of the field

® Limited pr wrt jet axis

> /< pZ >~ 350 MeV Y

> Well described by Gaussian p?
3 . . SO [4.1] normalized differential cross section for the square of the momentum component transverse o the jet axis (= sphericity
distribution 7= 14,22, 34 and 41.5GeV.

Range of longitudinal momenta



Event Generation: General Strategy

e From defined physics process, select hard scattering
configuration

o If quarks and gluons in final state, specify color structure

e Add any additional gluon radiation or gluon splitting to quarks
not included in hard scattering calculation

e Use showering scheme to turn quarks and gluons into hadrons

e Decay the hadrons (again using MC technique to choose
among possible decay modes and to select configuration of
decay products)

That covers eTe—



What else is needed for hadron collisions (or ep)?

e Protons composite objects

» Hard scattering involves quarks and gluons inside proton:
Select initial parton momenta using parton distribution
functions

e Must include ¢® dependence of parton distributions

» Partons rescatter during collision process
e MPI (multiparton interactions)
e Remanents of proton must also be turned into hadrons
» Act like two jets going down beampipe in opposite directions
e Intial as well as final state partons can undergo additional
QCD radiation of gluons (ISR, FSR)

e More complicated color structure possible



Putting it all together
(a picture from the Sherpa MC team)




One Last Example: Estimating Uncertainties

o Analysis often involves studies of complicated distributions
with many correlated variables

e Goal is to constrain parameters associated with a model or
theory that describes the data

¢ Not only do we want the best value of the parameters, we also
want the uncertainty on our estimate

e Both statistical and systematic uncertainties present
e Often MC techniques used to estimate uncertainty

e Use “toy Monte Carlo” samples with distributions chosen to
match data, including statistical uncertainties and systematic
variations

e Can determine confidence level using such procedure

e Similar techniques used for setting limits

We'll hear more about this in some of the upcoming student talks



