ATLAS readout system from the current Pixel Detector to the Phase-I and Phase-II upgrade

Alessandro Gabrielli

Physics and Astronomy Department University of Bologna

alessandro.gabrielli@bo.infn.it

http://www.bo.infn.it/~gabriell

.. and F. Alfonsi, G. Balbi, G. D'Amen, D. Falchieri, N. Giangiacomi, G. Pellegrini, R. Travaglini

The presenter wishes to acknowledge A. Borga, G. Lehmann and M. G. Sciveres for their relevant contributes to this summary

IBL Plan started in 2009

- IBL commissioned boards
- Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Outline

- Pixel Readout System till 2009, before Phase 0 upgrade
- IBL Plan started in 2009
- IBL commissioned boards
- Towards Phase-1 upgrade
- Towards Phase-2 upgrade
- GBT and FELIX
- Pixel_ROD
- Future Plans

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Some IBL Numbers

Item		Radial Extension	Length	Staves /	Modules	Pixels
		[mm]	[mm]	Sectors		$(\times 10^{6})$
Beam pipe (today)		29 < R < 36				
Beam pipe (with IBL)		25 < R < 29				
IBL	Envelope	31.0 < <i>R</i> < 40.0				
	Sensitive	< <i>R</i> >=25.7	Z < 332	14	224	6.02
Pixel	Envelope	45.5 < <i>R</i> < 241.0	Z < 3092			
B-layer	Sensitive	< R > = 50.5	Z < 400.5	22	286	13.2
Layer 1	Sensitive	< <i>R</i> > = 88.5	Z < 400.5	38	494	22.8
Layer 2	Sensitive	< <i>R</i> > = 122.5	Z < 400.5	52	676	31.2
Disk 1	Sensitive	88.8 < <i>R</i> < 149.6 = 88.5	< Z > = 495	8×2	48×2	4.4
Disk 1	Sensitive	88.8 < <i>R</i> < 149.6 = 88.5	< Z > = 580	8×2	48×2	4.4
Disk 1	Sensitive	88.8 < <i>R</i> < 149.6 = 88.5	< Z > = 650	8×2	48×2	4.4
					Pixel Total	80.4

Table 1. Main parameters of the Pixel Detector system including the foreseen IBL.

Directly from ATLAS TDR 19 8 October 2010

IBL: Insertable B-Layer

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Some Numbers

DD	Pixel System	Col. pair occ.	MCC	ROD
lans	$L = 10^{34} cm^{-2} s^{-1}$, LVL1 rate = 100 kHZ	hits/BC	bandwidth	bandwidth
	<i>B</i> -layer	0.18	47±3%	52±3%
	160 Mb/s MCC out			
Layer 2 expected to be more critical than Layer 1	6/7 modules/ROD, 44 RODs			
	Layer 1 / Disks	0.06	$39\pm3\%$	$35\pm3\%$
	80 Mb/s MCC out			
	13 modules/ROD, 38 + 24 RODs			
	Layer 2	0.04	$53\pm3\%$	$43\pm3\%$
	40 Mb/s MCC out			
	26 modules/ROD, 26 RODs			

Table 2. Column pair occupancies and output bandwidths for single MCC and ROD for different Pixel subsystems. Values reported in the table have been simulated for nominal LHC luminosity of $10^{34}cm^{-2}s^{-1}$ and maximum design first level trigger (LVL1) rate of 100 kHz.

Directly from ATLAS TDR 19 8 October 2010

IBL: Insertable B-Layer

IBL plan

2009

- IBL Plan started in 2009 IBL commissioned boards
- Towards Phase-1 upgrade
- Towards Phase-2 upgrade
- **GBT** and **FELIX**
- Pixel_ROD
- Future Plans

Insertable B-Layer (IBL) is a fourth layer added to the old Pixel detector between a new beam pipe and the old inner Pixel layer (B-layer).

MOTIVATIONS

- Peak luminosity was expected to increase from 1 to 2.2 x 10³⁴ cm⁻²s⁻¹
- *b* tagging efficiency, tracking precision
- Radiation hardness

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Readout Chips FE-I3

Pixel Size [µm ²]	50×400	50×250
Pixel Array	18×160	80×336
Chip Size [mm ²]	7.6×10.8	20.2×19.0
Active Fraction	74 %	89 %
Output Data Rate [Mb/s]	40	160
Transistor Count [M]	-	~80

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

IBL BOC + ROD

IBL Plan started in 2009

IBL Pixel Readout Chain

IBL Plan started in 2009

IBL commissioned boards Towards Phase-1 upgrade Towards Phase-2 upgrade GBT and FELIX

Pixel_ROD

Future Plans

Mar. 2012 - IBL ROD (rev B) Bologna

B

0

C

FEI4 module

Virtex5 + PowerPC environment

Patch for bugs on rev A Tests in Bologna, Wuppertal, CERN from May 2012

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Dec. 2012 - IBL BOC burnout at CERN

Reworking time 2 months

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

IBL/L2/L1/B-Layer/Disks BOC ROD current features

BOC: BMF: BOC Main FPGA, BCF: BOC Control FPGA

ROD: PRM: Program Reset Manager, Master and 2 x Slaves

06/09/2017

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Occupancy extrapolation

Estimated Module Controller Chip MCC→IBL ROD **link** occupancy at 75 and 100 kHz level 1 (LVL1) rate:

Link occupancy at 75 kHz L1 Trigger					
	μ	B-Layer	Layer 1	Layer 2	Disks
50 ns	37	39%	34%	52%	30%
	25	35%	31%	48%	27%
25 ns; 13 TeV	51	53%	59%	66%	39%
	76	71%	73%	111%	64%

Link occupancy at 100 kHz L1 Trigger					
	μ	B-Layer	Layer 1	Layer 2	Disks
50 ns	37	51%	45%	69%	40%
25 ns; 13 TeV	25	47%	42%	65%	37%
	51	71%	67%	88%	52%
	76	95%	97%	148%	75%

μ pile-up events

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Layer 2 limitations at L=7x10³³cm⁻²s⁻¹

Higher number of desynchronized modules in Layer 2

Synchronization Errors / Event

Pixel Readout System till 2009 before Phase 0 upgrade	
IBL Plan started in 2009	
IBL commissioned boards	
Towards Phase-1 upgrade	
Towards Phase-2 upgrade	
GBT and FELIX	• Ba
Pixel_ROD	10/0
Future Plans	vvc

.ayer 2 limitations at L=7x10³³cm⁻²s⁻¹

- Bandwidth limitations (@ 40 Mb/s) show up earlier as expected getting worse with increased luminosity
- Increase link bandwidth to 80 Mb/s

Phase-0 Upgrade 2015-2018

BOC: Back Of Crate. ROD: ReadOut Driver MCC: Module Controller Chip

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Layer 1 limitations at L=7x10³³cm⁻²s⁻¹

- Layer 1 will hit a brick wall later, at ~2x10³⁴ luminosity
- Layer 1 is already read out at 80 Mb/s
- Double the links per module and upgrade the bandwidth to 2x 80 Mb/s
- The IBL BOC then receives 2 links per module back, same as for the B-Layer right now.

Phase-0 Upgrade 2015-2018

BOC: Back Of Crate. ROD: ReadOut Driver MCC: Module Controller Chip

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

- Pixel_ROD
- Future Plans

Bandwidth limitations MCC-> IBL-ROD

Number of pile-up events μ

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade Towards Phase-2 upgrade

٠

GBT and FELIX

Pixel_ROD

Future Plans

- Plan to use the IBL ROD and BOC cards also for the Pixel upgrade to overcome the bandwidth limitations. **Still using VME cards**.
- Firmware of the IBL ROD needs modification to handle the Pixel module data.
- 26 card pairs for Layer2 and 38 card pairs for Layer1.
- ATLAS CERN identifies:
 - Bologna for the IBL-RODs
 - Wuppertal for the IBL-BOCs
- Base Option
 - Same IBL BOC-ROD pairs with fiber adapters and FW modifications

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Average fraction of module with sync. errors

Data Taking at CERN in 2015

- Data Taking in 2015 before and after a firmware tuning on the IBL RODs (black-plot) •
- Sync errors goes down and below the other pixel layers that were not yet upgraded ٠
- The RELEVANCE of the FIRMWARE

IBL Plan started in 2009

Summary of (Pixel but not only) DAQ up to 2017

Points to be revised for the Upgrade of Phase-II

Courtesy of A. Borga

- Too much custom electronics
- Too rigid configuration (Detector Dependent)
- ReadOut Driver (ROD) card based on Firmware and Embedded Software

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Towards Phase-2 Upgrade

- LHC Upgrade towards High Luminosity LHC (HL-LHC) in 2024-2026 (Phase-2)
- ATLAS will replace the inner detector completely
- New Pixel Front-End electronics
- Readout architecture and data transmission scheme will also change completely

HL: high-Luminosity LS: long shutdown EYETS: Extended Year-End Technical Stop

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Towards Phase-2 Upgrade

MOTIVATIONS

- LHC will become High Luminosity-LHC to produce 3000 fb⁻¹ integrated
- **Instantaneous luminosity increase by factor 5-7** up to 5*10³⁴cm⁻²s⁻¹
 - (not only a factor 2 of particle density)
- Integrated luminosity increase by factor 10 (radiation damage)

ADVANTAGES vs DRAWBACKS

- Higher track density --> better tracking granularity
- Higher particle flow **••** higher radiation damage
 - (current components already damaged by 2024)

HL: high-Luminosity LS: long shutdown EYETS: Extended Year-End Technical Stop

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Towards Phase-2 Upgrade

Towards Phase-2 Upgrade, CERN (not only ATLAS) has developed some versatile components:

- A high-speed optical rad-hard link (GBT project) to interface any "compatible" front-end electronics (see later)
 - independent from the experiments and the detectors _____

- can be used for data-taking and front-end slow-control
- ATLAS has developed the so-called FELIX project to upgrade the DAQ electronics
 - independent from the detectors
 - GBT interface capability
 - dual operational mode: GBT-mode (data-taking) and FULL-mode (trigger)
- Bologna, by following the ATLAS IBL ROD experience, has developed a PCI-express card (Pixel_ROD), which can be proposed within the FELIX project
 - PCI-express ver-2 bus, 16 GTX transceivers at 10 Gb/s (see later)
 - GBT interface capability

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Case Study

This is a first proposal about how to integrate the Pixel_ROD board within the FELIX Collaboration: some tests already carried out (see later)

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

The GBT Project

GBT (GigaBit Transceiver)

Optical link independent from the detector (type of Front-End)

- The **GBTx** (GBT13) is a radiation tolerant chip that can be used to implement multipurpose high speed (3.2-4.48 Gb/s user bandwidth) bidirectional optical links for high-energy physics experiments
- Logically the link provides three "distinct" data paths for Timing and Trigger Control (TTC), Data Acquisition (DAQ) and Slow Control (SC) information
- The link establishes a **point-to-point**, optical, **bidirectional**, constant latency **connection** that can function with very high reliability in the harsh radiation environment typical of high energy physics experiments at LHC

PD: Pin Diode LD: Laser Driver TIA: Trans Impedence Amplifier

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

The GBT Project

The GBTx ASIC is part of the GBT chipset composed of the following **4 chips**:

- a Trans-Impedance Amplifier for the optical receiver (GBTIA)
- a Laser Driver (GBLD) [2]
- a Slow Control Adapter ASIC (GBT-SCA)
- and the **GBTx** link ASIC that implements all the needed functions of the data and timing transceiver.

- New Small Wheel muon end-cap chambers
- Liquid Argon Calorimeters L1 calo trigger (Full-Mode FELIX configuration)

Pixel Readout System till 2009 before Phase 0 upgrade IBL Plan started in 2009 IBL commissioned boards Towards Phase-1 upgrade GBT and FELIX Pixel_ROD Future Plans

Bologna challenge towards Phase-2

- In summary FELIX is a PC based DAQ system designed for bridging custom links (GBT) to a COTS computer network
 Bologna is interested in joining the FELIX project to:
 - Profit from the experience and what learned from the IBL project
 - Profit from the HW, SW and FW tools developed in the recent years
 - Invest beyond Phase-0 and Phase-1 upgrade, towards Phase-2

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Bologna: Pixel_ROD design parameters

Device	Expected Performance		
GBT	9,6 Gbps		
PCIe	Minimum 2 Gbps per lane		
Gb Ethernet	125 MHz		
FMC	165 MHz		
FMC HPC FMC LPC	FMC LPC DDR3 DDR3 J J J J J J J J J J J J J		
PCIe			

Low Pin Count (LPC) High Pin Count (HPC) FPGA Mezzanine Card (FMC) small form-factor pluggable (SFP)

06/09/2017

small form-factor pluggable (SFP)

LBNL A. Gabrielli

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

- 7-series Xilinx[®] FPGAs
 - ✓ Kintex7 XC7K325T-2FFG900C;for trigger and data processing
 - ✓ Zynq XC7Z020-1CLG484C with physical dual-core ARM Cortex-A9
- 1 x PCIe Express Gen2 8x-lane (2Gb/s min to the PC memory, up to 10Gb/s)•
- 16 x GTX@ 12.5Gb/s on PCIe, SFP, SMA, FMC, Eth
 - ✓ 1 x SFP 10-Gb/s link (GBTx) tested at 5Gb/s
 - ✓ 1 x HPC (400-pin) HS diff lines (4 up to 10Gb/s)
 - ✓ 2 x LPC (160-pin) HS diff lines (1 up to 10Gb/s)
 - ✓ DDR3 2GB x 667 MHz (kintex)
 - ✓ DDR3 1GB x 667 MHz (Zynq)
 - ✓ 2 x GB/Eth (1 up to 10Gb/s)
 - ✓ 2 x USB JTAG
 - ✓ 2 x SMA (1 up to 10Gb/s)

2 Boards Fabricated

Low Pin Count (LPC) High Pin Count (HPC) FPGA Mezzanine Card (FMC) small form-factor pluggable (SFP) SubMiniature version A (SMA)

Pixel_ROD IO-Features

- **IBL Plan started in 2009**
- **IBL** commissioned boards
- Towards Phase-1 upgrade
- Towards Phase-2 upgrade
- GBT and FELIX
- Pixel_ROD
- **Future Plans**

Pixel_ROD Buses

7-series Xilinx FPGAs

- Kintex7 to Zyng bus 21-bit differential bus \checkmark
- \checkmark 32-bit / 64-bit DDR3 differential buses
- SFP diff bus (1 Transceiver) \checkmark
- \checkmark 2x ETH diff buses (1 Transceiver)
- FMC (HPC) diff buses (4 Transceivers) \checkmark
- FMC (LPC) diff bus (1 Transceiver) \checkmark
- 2 x UART buses \checkmark
- 2 x SMA (1 Transceiver) \checkmark
- PCIe (8 Transceivers) \checkmark

06/09/2017

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

"Patched" boards under test

- **IBL** commissioned boards
- Towards Phase-1 upgrade
- **Towards Phase-2 upgrade**
- GBT and FELIX
- Pixel ROD
- **Future Plans**

Test GBT (1)

GBTx 10 Gb/s simulation ٠

(b) RX

- Actual Link between ٠
 - Pixel-ROD ٠
 - Xilinx demo-board KC705 using firmware GBT-FPGA (CERN) ٠
- The two boards communicate at **4.8 Gb/s**. •
- Test performed on both Pixel_ROD boards ٠

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Test GBT (2)

Actual link at 4.8 Gb/s with the GBTx ASIC on an ALICE TOF board

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Transceiver Tests

Walking 1s test in loopback on SFP connector at 4.8 Gb/s with BER $\approx 10^{-12}$

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and **FELIX**

Pixel_ROD

Future Plans

Pixel_ROD integration test with Mini-Felix

Presentation of the current status within one of the next FELIX developers meetings

• Current status (NIKHEF July 2017)

- Bologna is able to run the:
 - Aurora (64b/66b) protocol in **Duplex** mode: (4 lanes at 1.28 Gbps) in loopback only
 - Aurora (64b/66b) protocol in Simplex and Duplex mode: (1 lane at 5.12 Gbps)
 - Communication to FELIX in GBT mode: (4.8 Gbps)
 - Communication to FELIX in **Duplex mode** (custom protocol): (9.6 Gbps):
 ≈ 100 Gbyte of data transmitted in 100 s at NIKHEF on July 2017
- Next steps
 - 5 new Pixel_RODs are under construction: estimated delivery by Oct/Nov 2017
 - Presentation of the current status within one of the next meetings
 - (tentative schedule Sep. 18-23 2017)
 - We present a Poster at TWEPP-11 in Santa Cruz to introduce the Pixel_ROD board and the status of the art and the international community

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and **FELIX**

Pixel_ROD

Future Plans

Pixel_ROD integration test with Mini-Felix

IBL Plan started in 2009 IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and **FELIX**

Pixel_ROD

Future Plans

Future workplan and tests in Bologna

SOME FUTURE PLANS

DAQ demo readout chain by designing :

- ✓ a Pixel_ROD FM version compatible to what currently used in the ATLAS Pixel detector, for any layer
- ✓ an emulated data-taking using the high-speed lines of the PCIe and FMC connectors, being compatible with RD53A and FEI4 data formats
- ✓ a fully compatible FW to cope with Aurora and GBT protocols

and within the DAQ community we are working to make available:

- ✓ A 4 x 1.28Gb/s Aurora protocol RD53 emulated data, concatenated to 1 x 5.12 GB/s again to be interfaced to the Felix card
- ✓ A complete behavioural emulator of the next RD53A chip under submission

By Summer-Fall 2017 the tests will be completed with a new batch of (patched) 5 boards

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Thank you !!

IBL Plan started in 2009

IBL commissioned boards

Towards Phase-1 upgrade

Towards Phase-2 upgrade

GBT and FELIX

Pixel_ROD

Future Plans

Backup slides