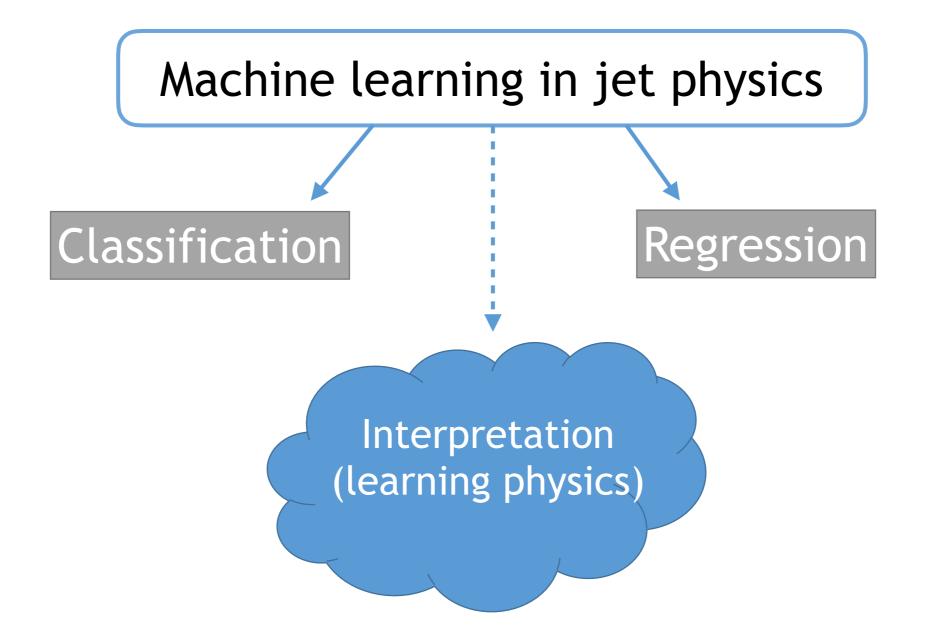
Learning Jet Evolution with a Recurrent Neural Network Based Probabilistic Model

Anders Andreassen & Christopher Frye

in collaboration with Ilya Feige & Matthew Schwartz



How can we learn about jets using machine learning?

Idea: (1) Use a neural network to reproduce jets (2) Look inside network to see what it's doing

difficult!

Want to reproduce mapping: hard parton \mapsto momenta of stable hadrons

Try to learn MC parton shower?

• not repeatable on data

Learn the jet clustering tree!

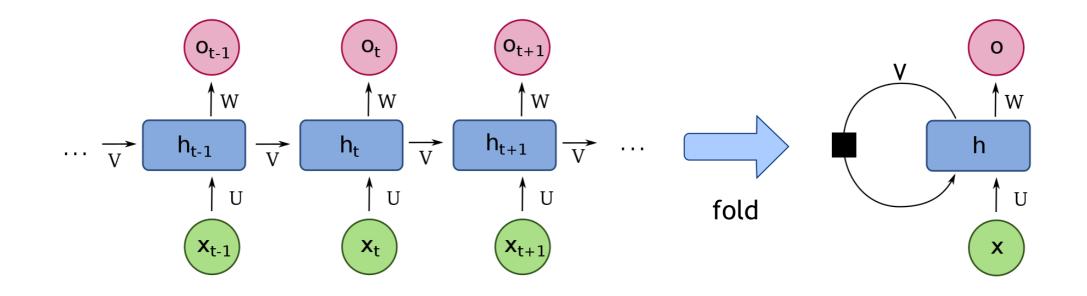
• works on data

How can we build a machine learning model sufficiently flexible to fit any data, and sufficiently transparent to probe what it learned?

Want an architecture inspired by factorization, but general enough to fit any non-factorizing structure We have built a probabilistic model with architecture customized for jet evolution

Its transparent structure allows us to interpret output from intermediate layers and probe what the model has learned

Recurrent neural networks naturally model sequential evolution



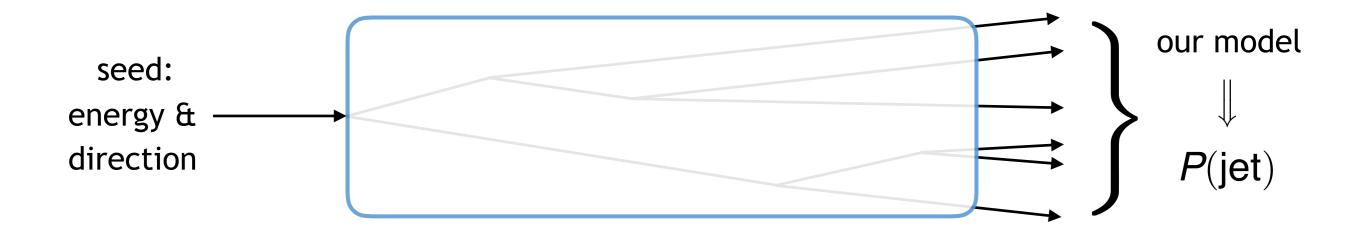
...and can handle data with indeterminate number of time steps

RNNs are perfect for modeling jet evolution!

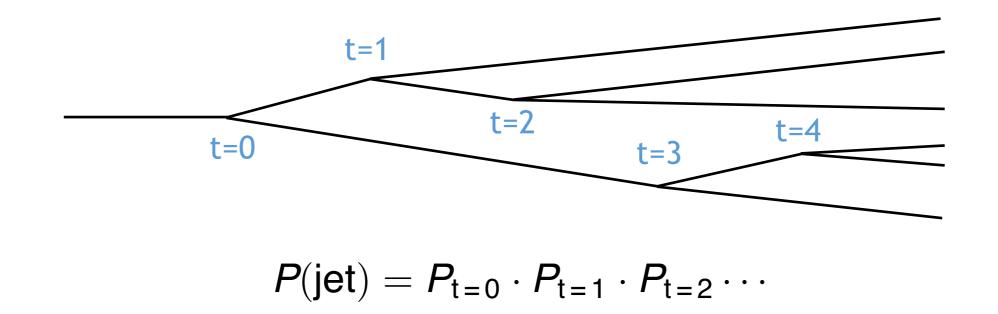
figure by François Deloche

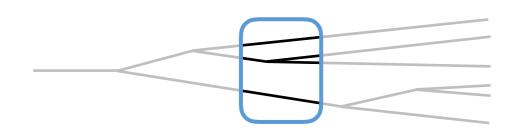
PART 1: OUR MODEL

Our model computes the probability of a jet...

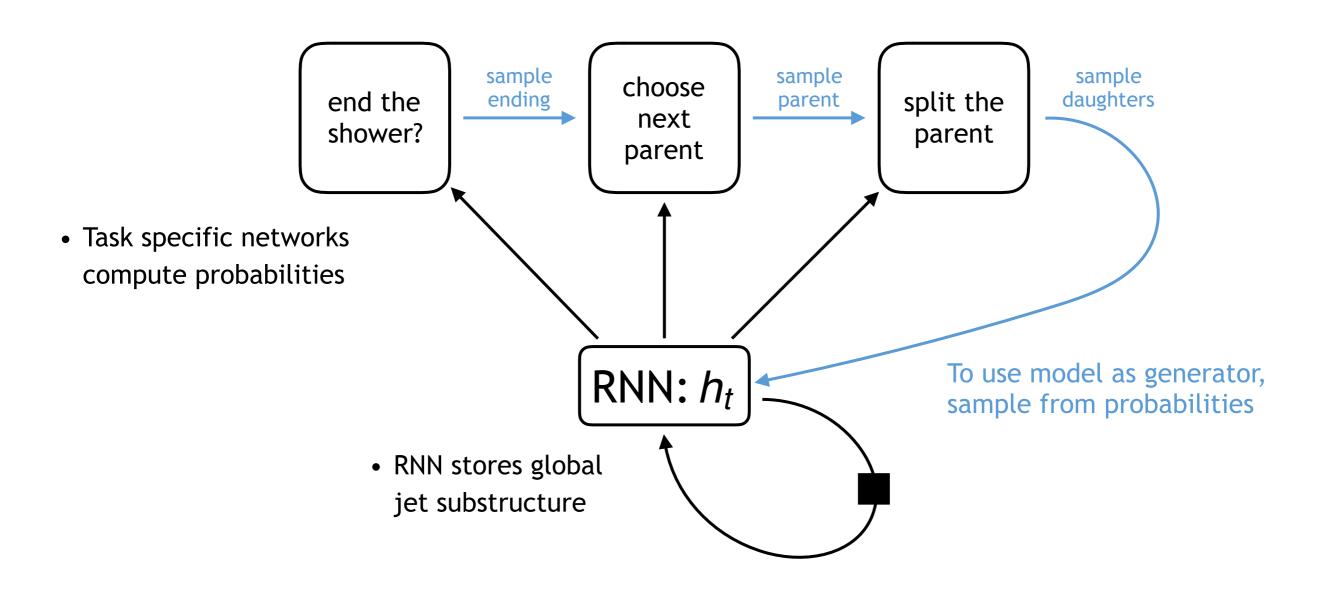


...as a product over "time steps" using a clustering tree

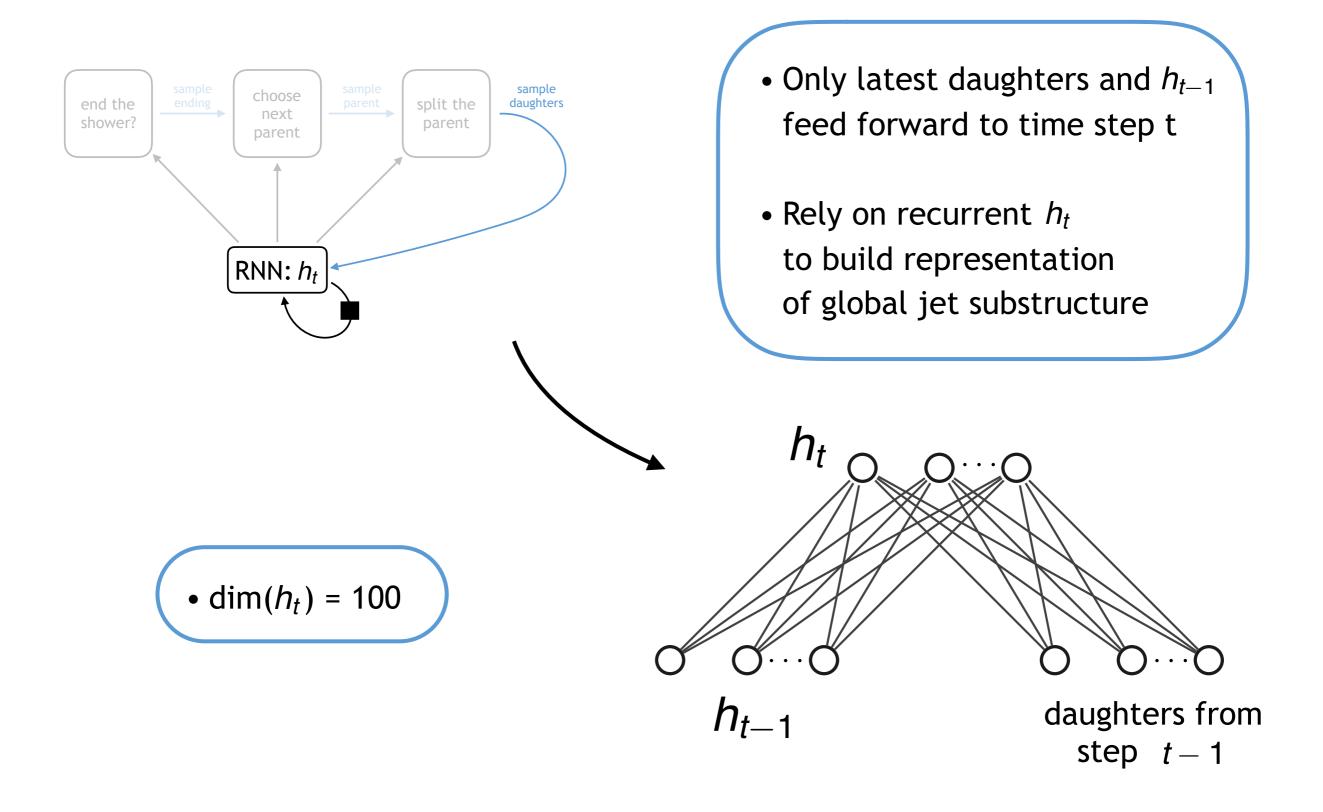




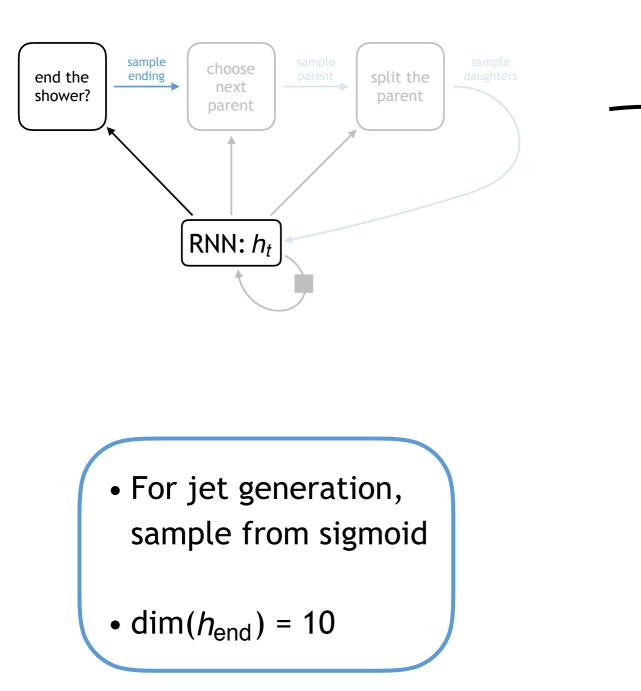
 $P_t = P(\text{not end}) \cdot P(\text{parent} | \text{not end}) \cdot P(\text{daughters} | \text{parent})$

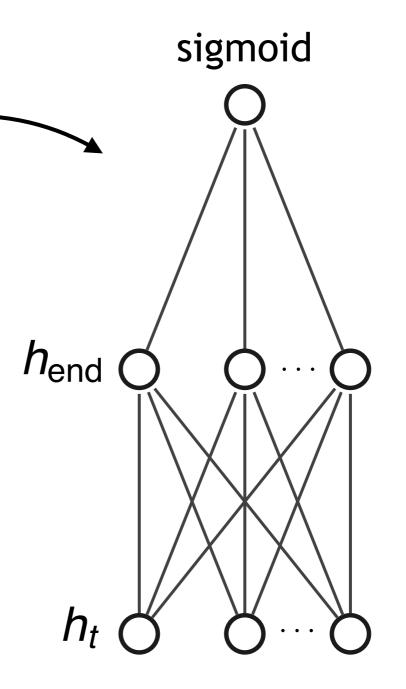


RNN builds representation of global structure

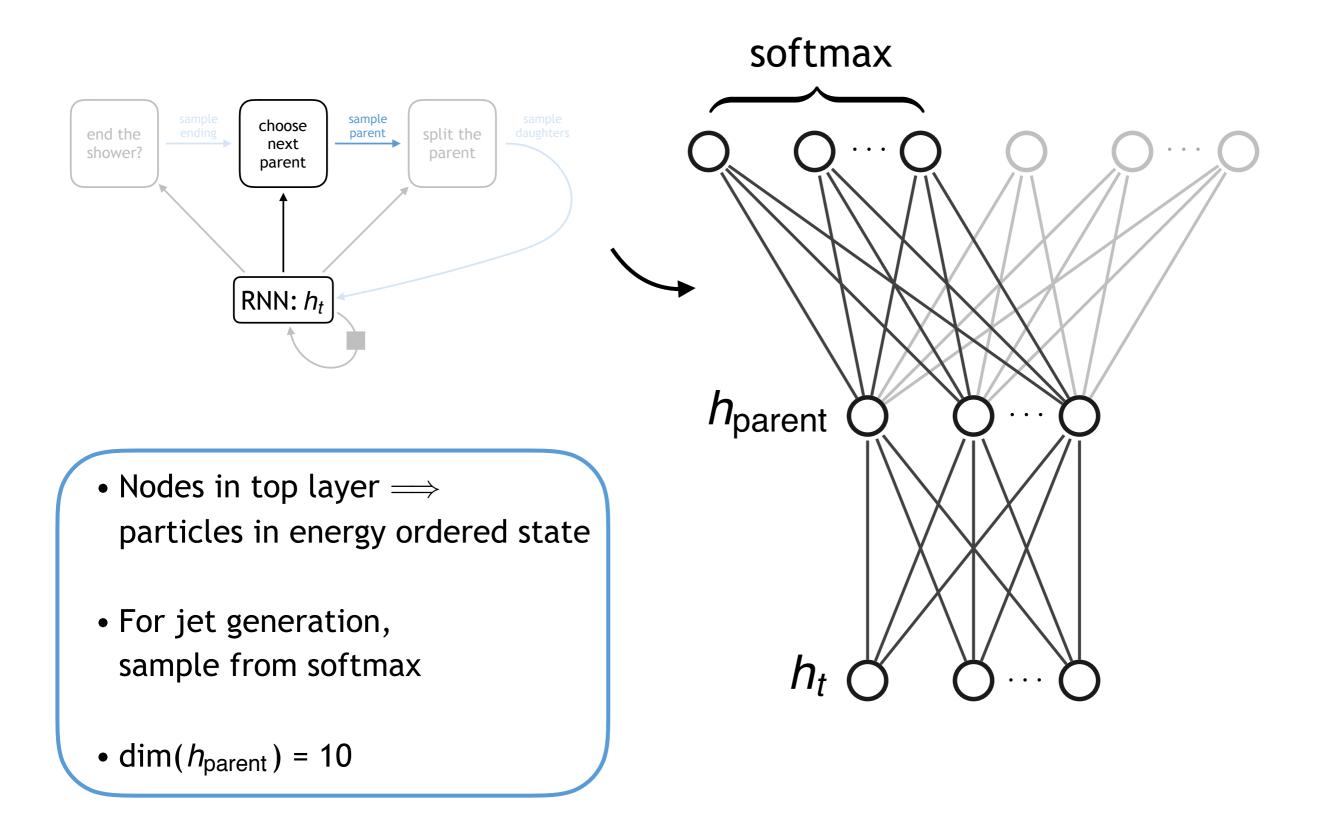


Task specific network $#1 \Longrightarrow$ probability shower will end

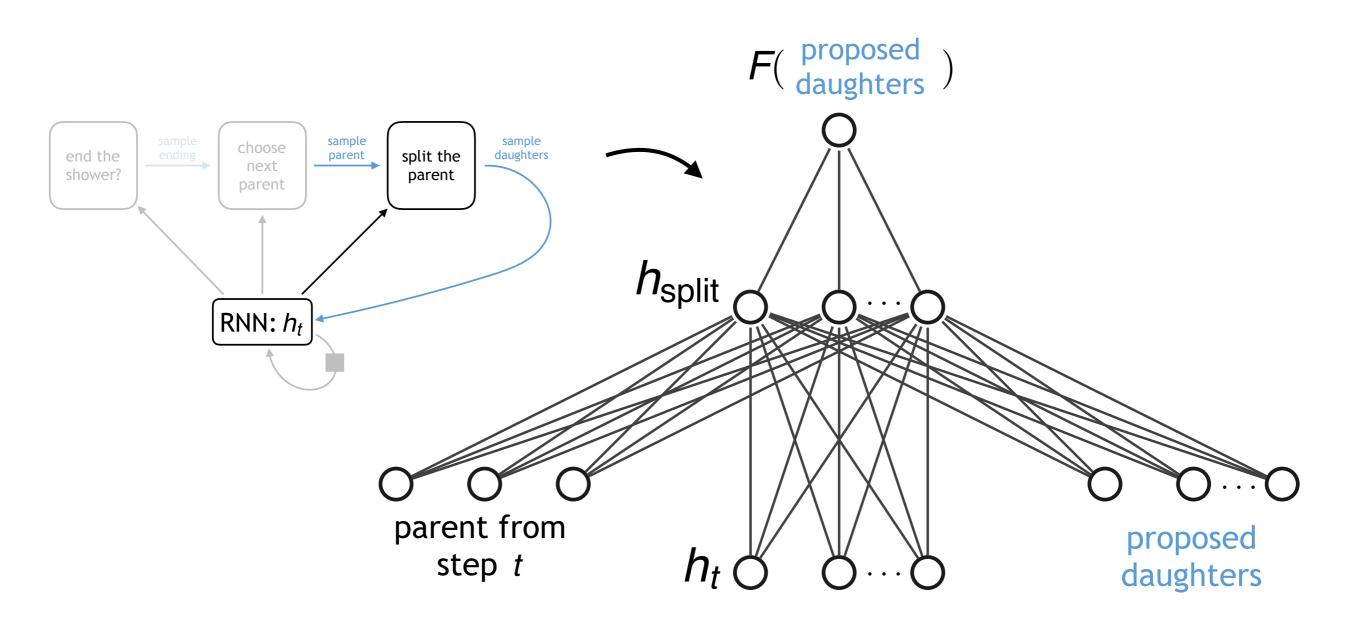




Task specific network $\#2 \Longrightarrow$ probability of next parent

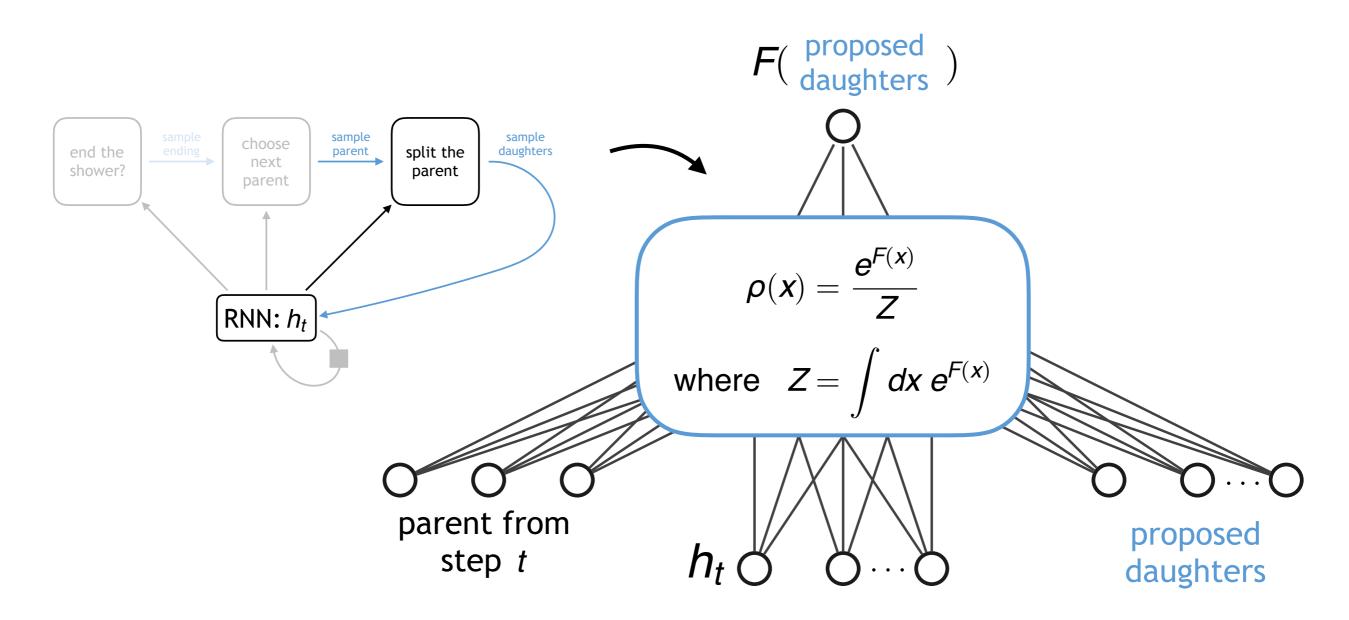


Task specific network $#3 \Longrightarrow$ probability over daughters



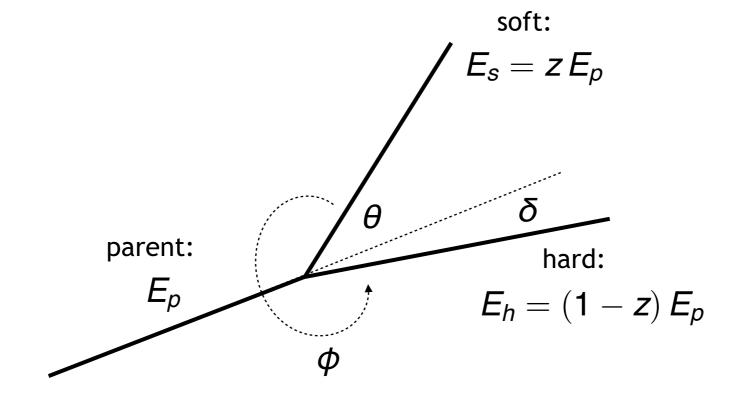
For jet generation,
 sample daughters from F
 dim(h_{split}) = 100
 25,000 parameters in all

Task specific network $#3 \Longrightarrow$ probability over daughters



For jet generation,
 sample daughters from F
 dim(h_{split}) = 100
 25,000 parameters in all

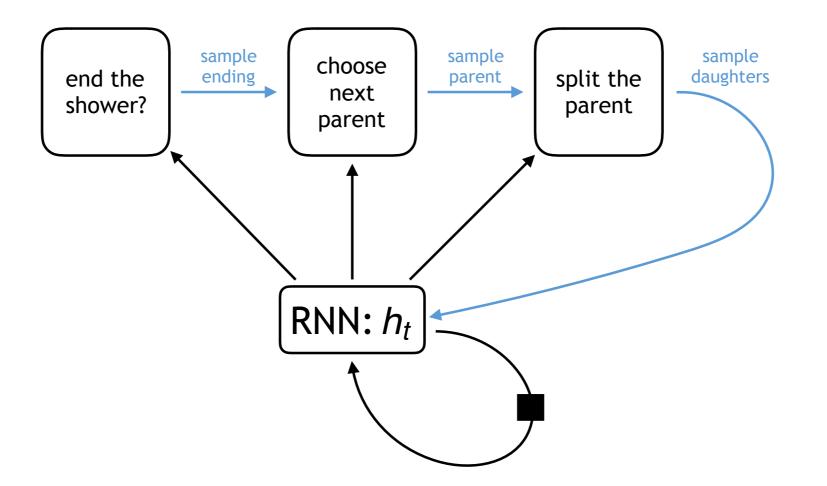
Parametrization of daughter momenta: z, θ, ϕ, δ



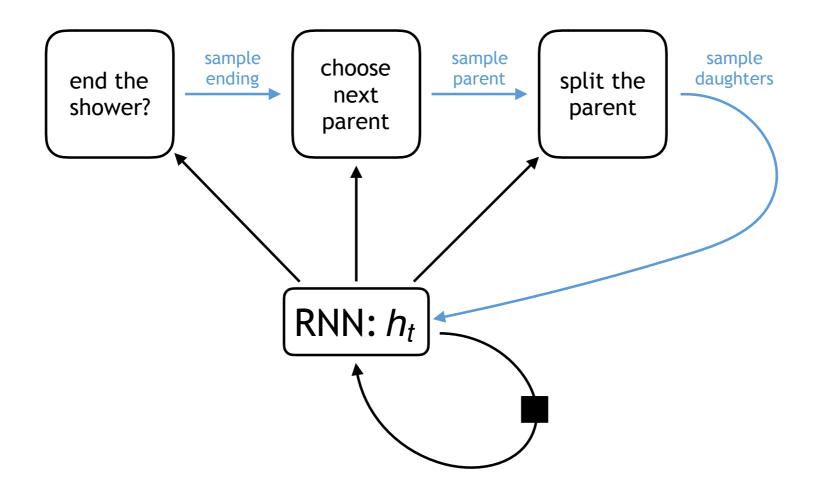
INTERMISSION

PART 2: TRAINING & RESULTS

Reminder: our model at a single time step

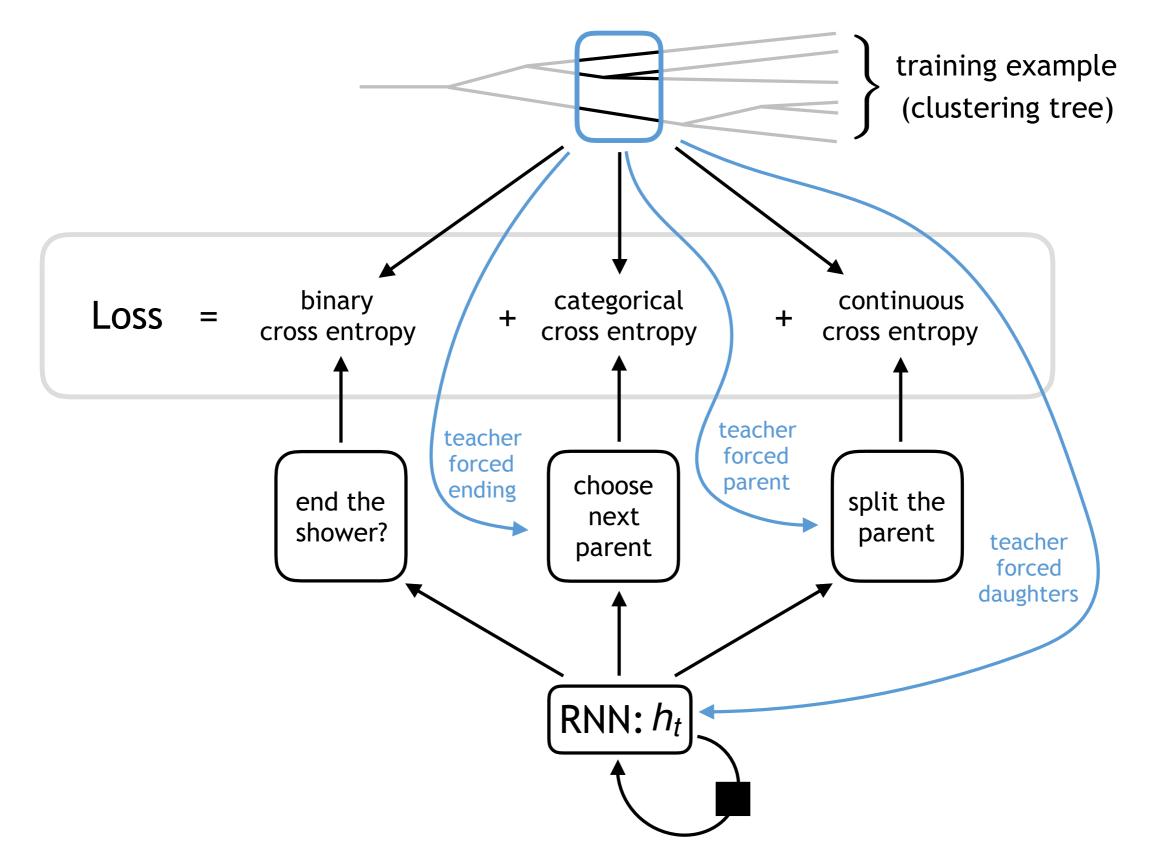


Reminder: our model at a single time step



We do <u>NOT</u> train model by comparing generated jets to training examples

Training our model



Details about our training set

```
• Training set from Pythia 8 as proof-of-concept:

500,000 e^+e^- events at E_{\rm CM} = 10 TeV

E_{\rm jet} \approx 5 TeV with R_{\rm jet} = \pi/2

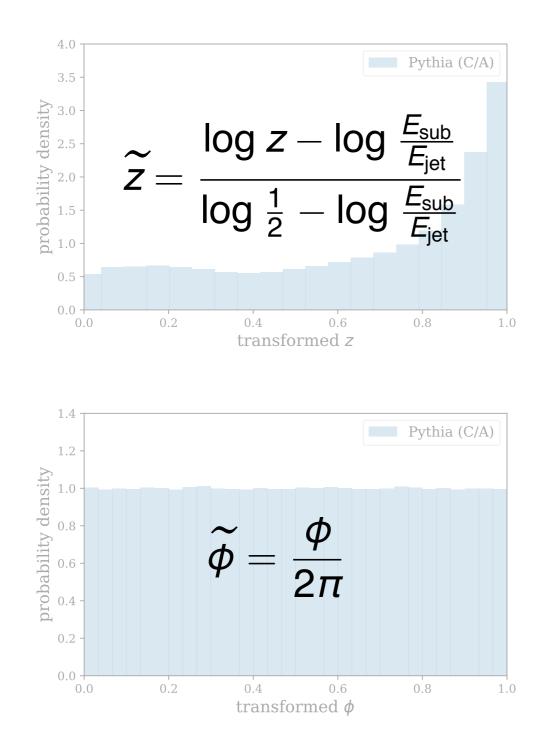
• Jet constituents reclustered with C/A to obtain trees
```

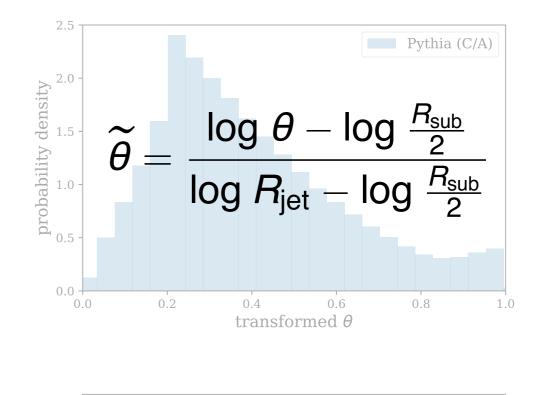
$$E_{sub} = 1 \text{ GeV}$$
 with $R_{sub} = 0.1$

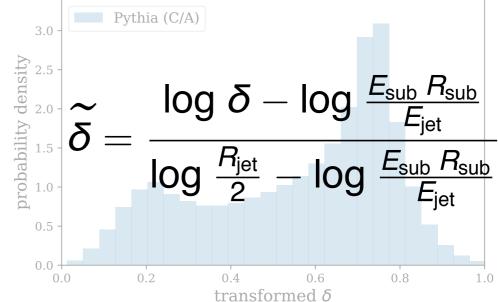
• Model and training implemented in Theano

• Train using final state momenta only, all methods repeatable on LHC data

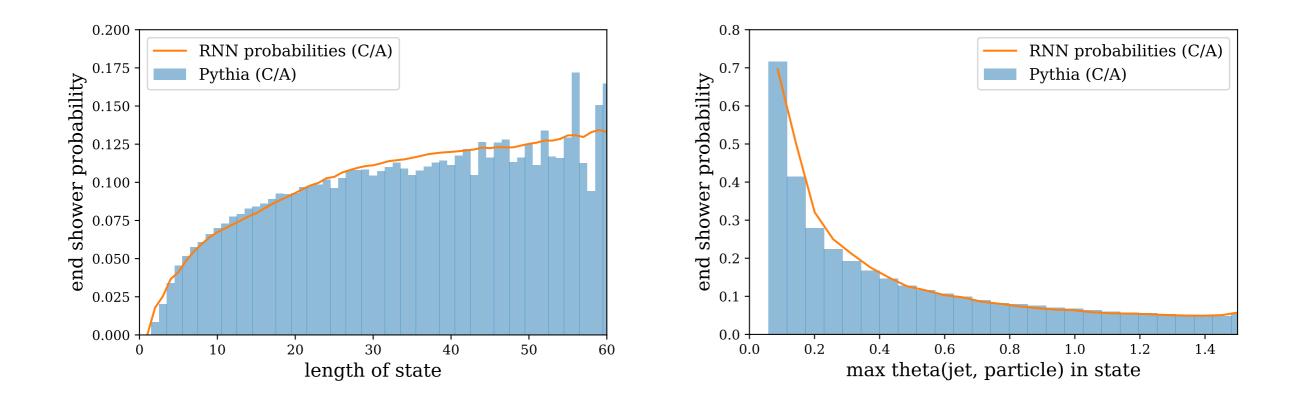
Coordinate transformation \implies features in [0,1]





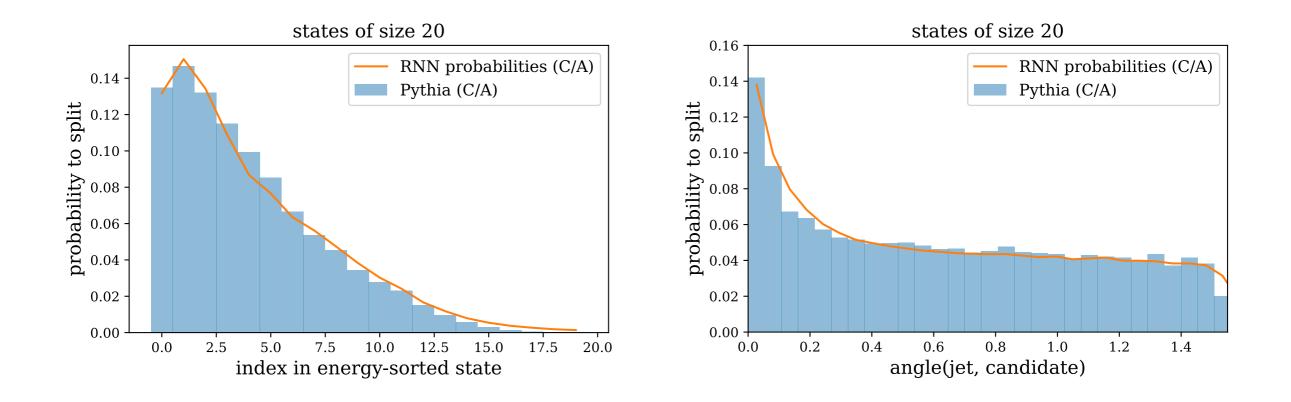


Looking inside our model: ending the shower



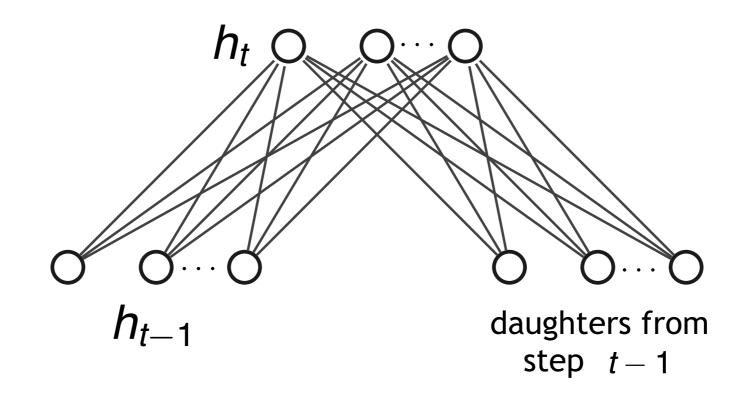
- Model probabilities computed on training examples, then compared to histogram of training data
- Curves averaged over all time steps and all jets

Looking inside our model: choosing the next parent

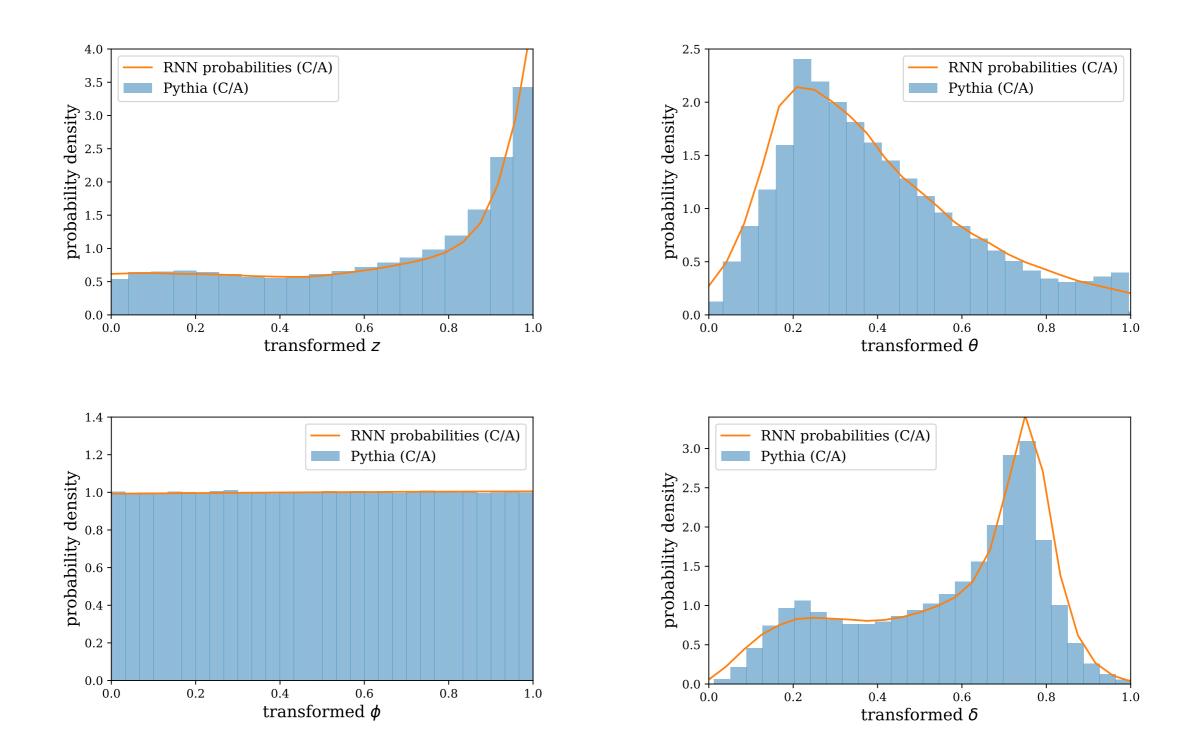


- Model probabilities computed on training examples, then compared to histogram of training data
- Curves averaged over time step t=20 in all jets

RNN really stores global structure!



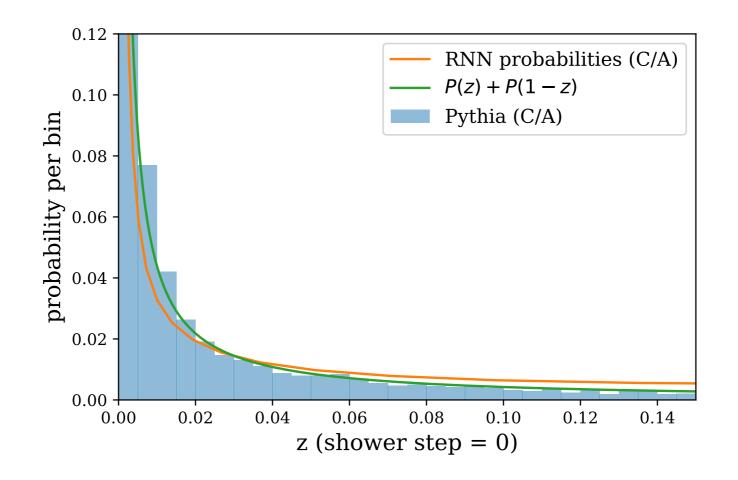
Looking inside our model: splitting into daughters



Our model's effective splitting function

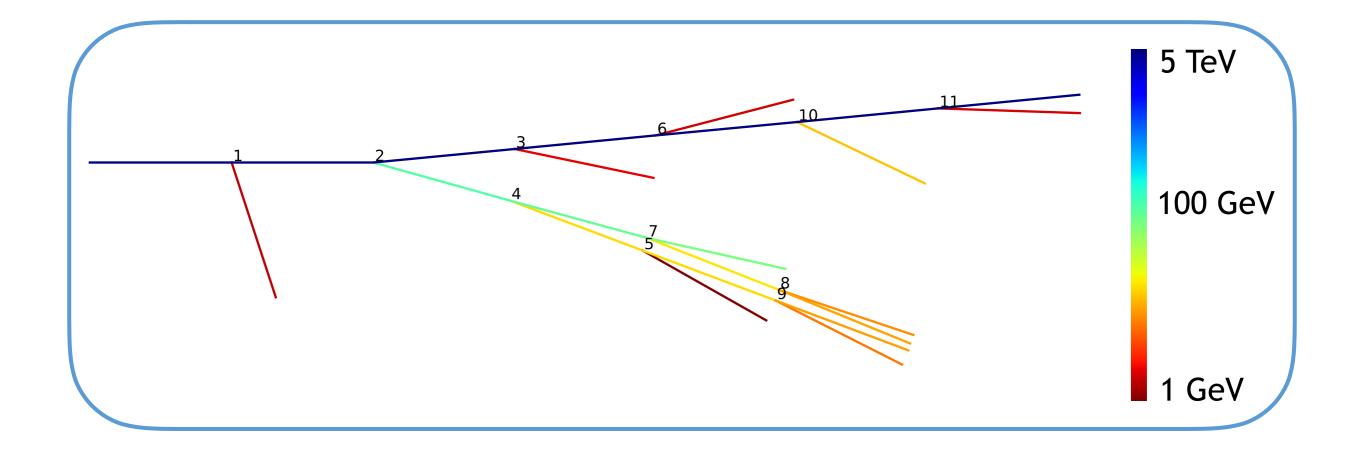
• Distribution of z's at each splitting of C/A tree are closely related to QCD splitting function:

$$P(z) = rac{1 + (1 - z)^2}{z}$$

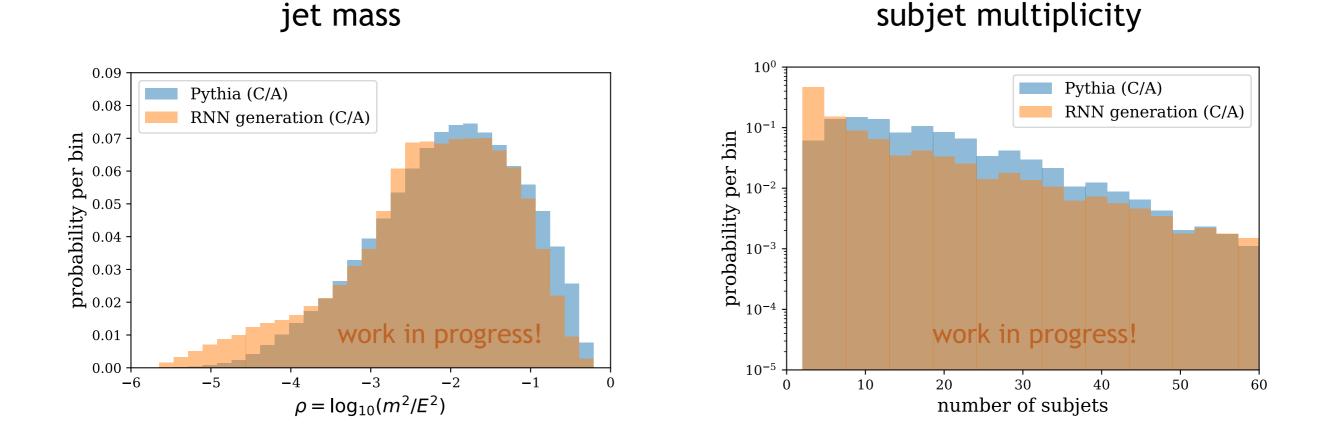


Our model as a shower generator

• Given seed momentum (energy & direction) one can sample final states from our model



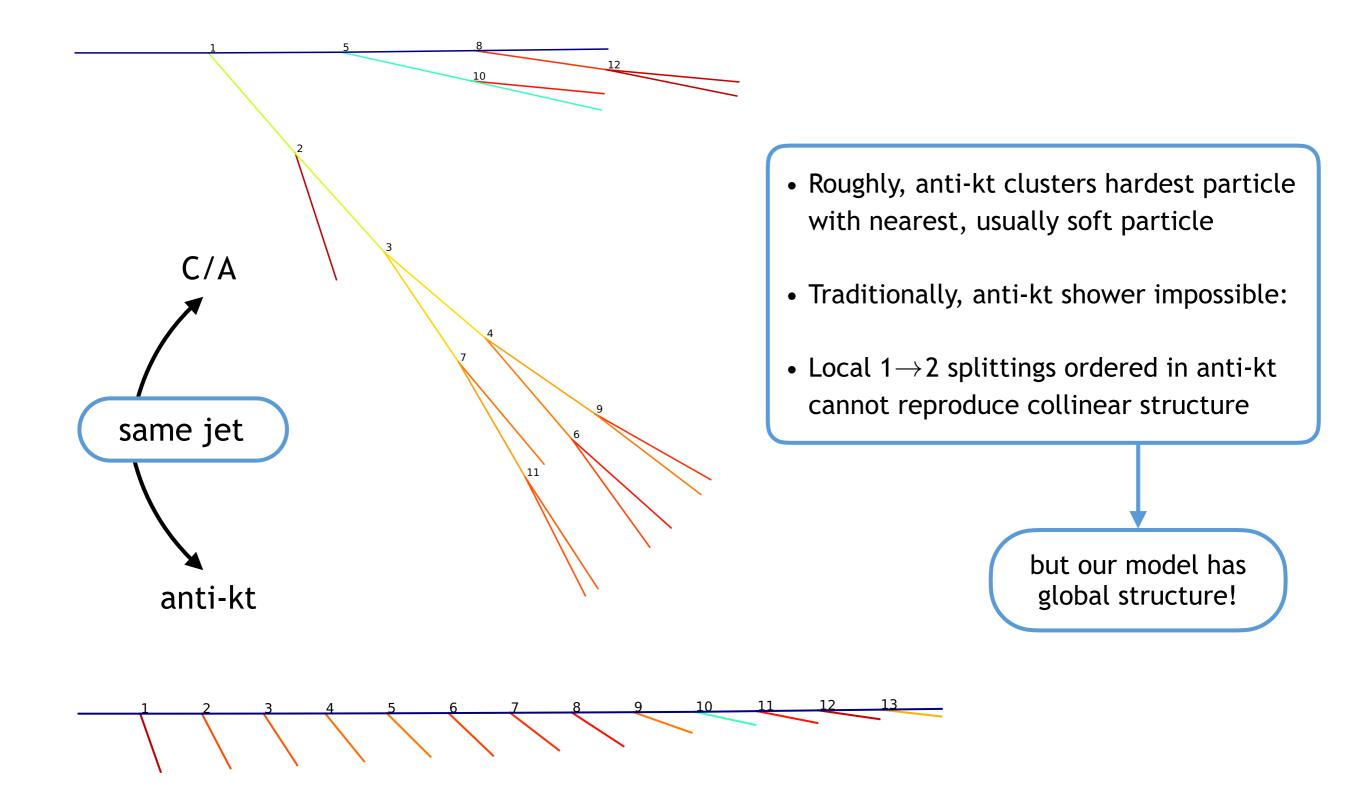
Generated distributions of final-state observables



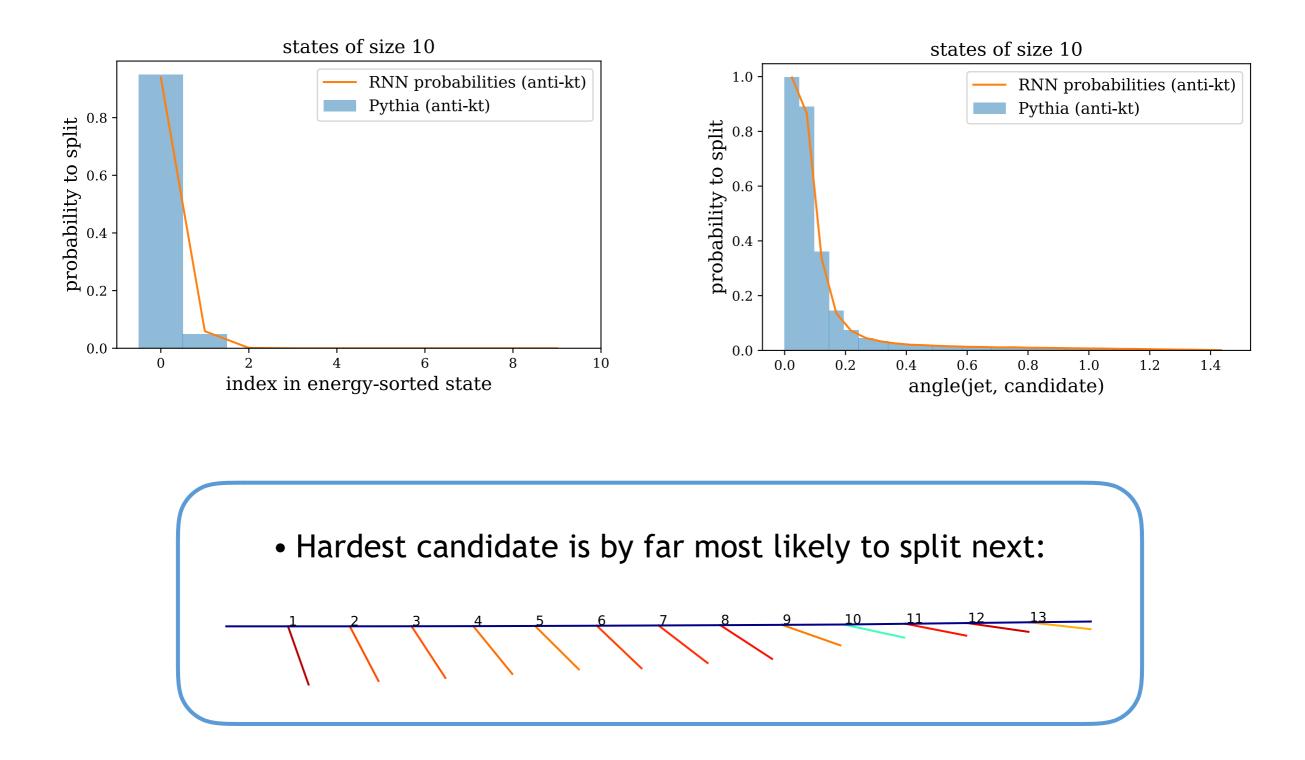
• Jet generation is a rigorous test of all model components:

small errors at early time steps can evolve into large mistakes later

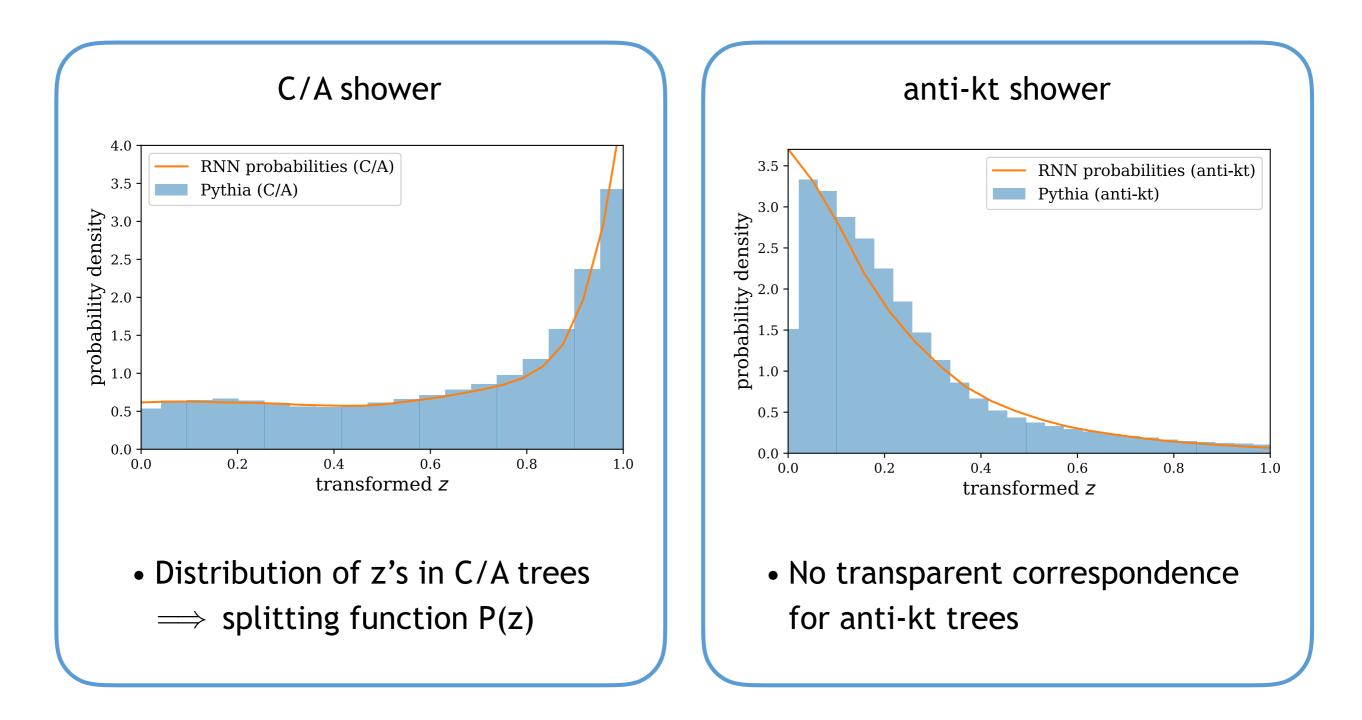
Can we build an anti-kt shower?



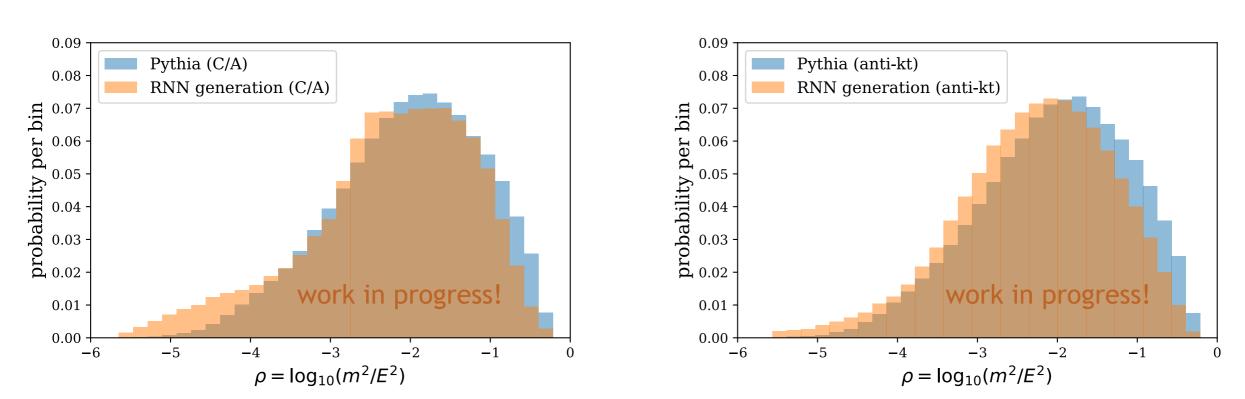
Certain aspects of anti-kt are easy to learn...



...but the physics gets hidden



Clustering algorithm independence



C/A shower

anti-kt shower

Regardless of clustering algorithm used,

model and data agree on final state distributions!

Summary

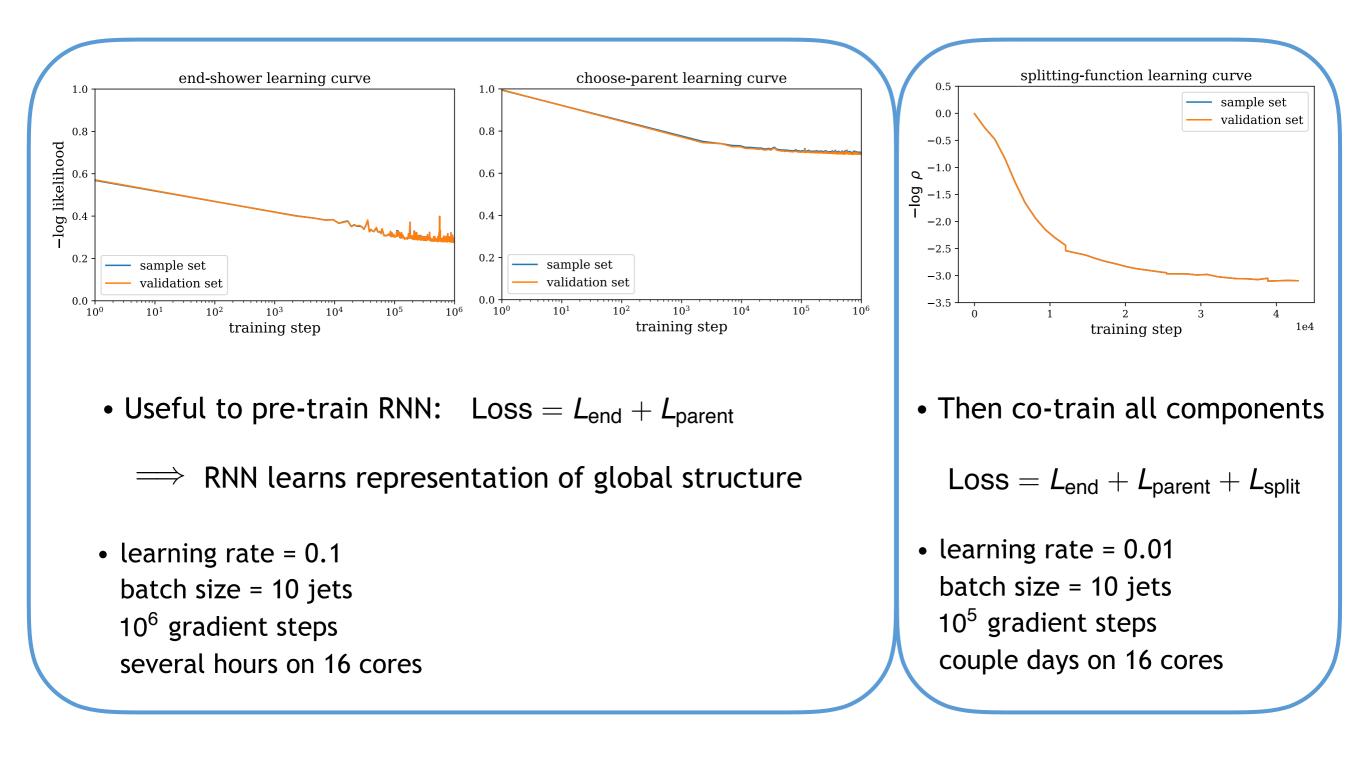
- Probabilistic model with recurrent architecture customized for jet evolution
- Transparent setup lets us probe what jet substructure the network has learned, e.g. QCD splitting functions
- Can be trained directly on data, any clustering algorithm

What next?

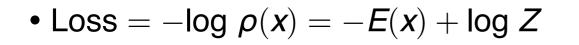
- Clustering algorithm independent training
 - sum over clustering trees
 - discover factorization?
- Including quantum numbers, showering full events
- Training on real data
 - CMS Open Data as a start
 - heavy ion collisions?
- Unbiased generator for jets

BACK UP SLIDES

Training summary

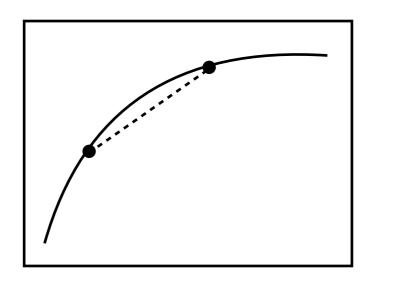


Biased estimations



• Uniform sampling to estimate $Z = \int dx e^{E(x)}$ \implies unbiased estimator: $\langle \hat{Z} \rangle = Z$

• Biased estimator of loss: $\langle \log \hat{Z} \rangle < \log \langle \hat{Z} \rangle$



Δ_{max}

1e4

