
TESTING DATASET GROUP 1 : iEBE-VISHNU + MC-Glauber

Centrality: ⌘/s 2 [0, 0.05] ⌘/s 2 (0.05, 0.10] ⌘/s = (0.10, 0.16]

10-60% EOSL EOSQ EOSL EOSQ EOSL EOSQ

Au-Au
p
sNN = 200 GeV 650 850 900 750 200 950

Pb-Pb
p
sNN = 2.76 TeV 500 650 600 644 499 150

TESTING DATASET GROUP 2 : CLVisc + IP-Glasma

Au-Au
p
sNN = 200 GeV, b <⇠8 fm EOSL EOSQ

⌘/s = 0 4164 4752

⌘/s = 0.08 1173 864

TABLE 2. The testing dataset. Numbers of ⇢(pT,�) generated by the CLVisc and
iEBE-VISHNU hydrodynamic packages with di↵erent initial conditions. ⌘/s is ratio
of shear viscosity and entropy density. b is the impact parameter. ⌧0 = 0.6 fm for all
the collisions. In iEBE-VISHNU simulations, the freeze-out temperature is varied in
the range [115, 142]MeV. In CLVisc simulations, the freeze-out temperature is set to
be 137MeV.

TESTING DATA GROUP 0 GROUP 1 GROUP 2

Number of events 4000 7343 10953

Accuracy 99.88± 0.04% 93.46± 1.35% 93.91± 3.92%

TABLE 3. Testing accuracies. The mean prediction accu-
racies and the standard deviations given by 10 trained mod-
els in cross validation method, from three groups of testing
datasets, (GROUP 0) CLVisc with AMPT initial condition,
(GROUP 1) iEBE-VISHNU and (GROUP 2) CLVisc with the
IP-Glasma-like initial condition.

For simplicity, the exploratory study has not included pi-
ons from resonance decays (the hadronic transport mod-
ule UrQMD is switched o↵ in iEBE-VISHNU to exclude
contributions from resonance decays in testing data).

For complex and dynamically evolving systems, the fi-
nal states may not contain enough information to retrieve
the physical properties of initial and intermediate states
due to entropy production (information loss) during the
evolution. The mean prediction accuracy decreases from
97.1% (for ⌘/s = 0.0) to 96.6% (for ⌘/s = 0.08) and 87%
(for ⌘/s = 0.16) in the 10-fold cross validation for test-
ing GROUP 1. Besides, the construction of conventional
observables may introduce further information loss due
to projection of raw data to lower dimensions, as well as
information interference due to its sensitivity to multi-
ple factors. These make it yet unclear how to reliably
extract physical properties from raw data. Our study
firmly demonstrates how to detect the existence of phys-
ical encoders in final states with deep CNN decoders, and
sets the stage for further applications, such as identifying
all relevant physical properties of the systems.

Observation from the neural-network decoder

In order to get physical insights from the neural-
network model, it is instructive to visualize the complex
dependences learned by the network. For this purpose,
we employ the recently developed Prediction Di↵erence

Analysis method [38, 39]. This method uses the obser-
vation that replacing one feature in the input image can
induce a sizable prediction di↵erence if that feature is
important for classification decision. The prediction dif-
ferences can be visualized as the importance maps of all
the input features for the classification network.
Shown in Fig. 2 are importance maps which illustrate

the (p
T

, �) dependence of the mean prediction di↵erence
averaged over 800 events for di↵erent model setups (ini-
tial conditions, PDE solver and model parameters), EoSs
and values of the shear viscosity. For a given event, the
mean prediction di↵erence in each (p

T

, �) bin is com-
puted against 10 random reference events from the same
dataset. Comparing di↵erent columns in the same row
in Fig. 2, we can see that importance maps vary slightly
for di↵erent values of viscosity and model setups (Group
1: IEBE-VISHNU+MC-Glauber, Group 2: CLVics+IP-
Glasma) for the same EoS. However, importance maps
for EOSL in general have a distinctly narrower width in
the p

T

range than that for EOSQ, independently of the
model setup and the value of viscosity [40]. This might
be the important region of hidden features the network
recognizes in classifying the EoS under each event.

Discussion

Besides the deep CNN method employed in the present
paper, there are also some other machine learning classi-
fiers. In the supplementary materials we attached the re-
sults from several traditional machine learning methods,
such as support vector machine classifier (SVC), decision
trees, random forests and gradient boosting trees. The
best classifier (linear SVC) that generalizes well on two
testing datasets achieves on average ⇠ 80% prediction ac-
curacy. The important features from di↵erent classifiers
di↵er from each other, however, those with good gener-
alization capability have similar importance regions as
given by the deep CNN. The deep CNN with on aver-
age ⇠ 95% prediction accuracy works much better to
answer the core questions – Is there a traceable encoder
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