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Figure 3: Visualization of the effects of marginal versus conditional sampling using the GoogLeNet
classifier. The classifier makes correct predictions (ostrich and saxophone), and we show the evidence for (red)
and against (blue) this decision at the output layer. We can see that conditional sampling gives more targeted
explanations compared to marginal sampling. Also, marginal sampling assigns too much importance on pixels
that are easily predictable conditioned on their neighboring pixels.

Figure 4: Visualization of how different window sizes influence the visualization result. We used the
conditional sampling method and the AlexNet classifier with l = k + 4 and varying k. We can see that even
when removing single pixels (k = 1), this has a noticeable effect on the classifier and more important pixels get
a higher score. By increasing the window size we can get a more easily interpretable, smooth result until the
image gets blurry for very large window sizes.

We start this section by demonstrating our proposed improvements (sections 3.1 - 3.3).

Marginal vs Conditional Sampling

Figure 3 shows visualizations of the spatial support for the highest scoring class, using marginal
and conditional sampling (with k = 10 and l = 14). We can see that conditional sampling leads
to results that are more refined in the sense that they concentrate more around the object. We can
also see that marginal sampling leads to pixels being declared as important that are very easily
predictable conditioned on their neighboring pixels (like in the saxophone example). Throughout our
experiments, we have found that conditional sampling tends to give more specific and fine-grained
results than marginal sampling. For the rest of our experiments, we therefore show results using
conditional sampling only.

Multivariate Analysis

For ImageNet data, we have observed that setting k = 10 gives a good trade-off between sharp results
and a smooth appearance. Figure 4 shows how different window sizes influence the resolution of the
visualization. Surprisingly, removing only one pixel does have a measurable effect on the prediction,
and the largest effect comes from sensitive pixels. We expected that removing only one pixel does
not have any effect on the classification outcome, but apparently the classifier is sensitive even to
these small changes. However when using such a small window size, it is difficult to make sense of
the sign information in the visualization. If we want to get a good impression of which parts in the
image are evidence for/against a class, it is therefore better to use larger windows. If k is chosen too
large however, the results tend to get blurry. Note that these results are not just simple averages of
one another, but a multivariate approach is indeed necessary to observe the presented results.

Deep Visualization of Hidden Network Layers

Our third main contribution is the extension of the method to neural networks; to understand the role
of hidden layers in a DNN. Figure 5 shows how different feature maps in three different layers of the
GoogLeNet react to the input of a tabby cat (see figure 6, middle image). For each feature map in a
convolutional layer, we first compute the relevance of the input image for each hidden unit in that
map. To estimate what the feature map as a whole is doing, we show the average of the relevance
vectors over all units in that feature map. The first convolutional layer works with different types of
simple image filters (e.g., edge detectors), and what we see is which parts of the input image respond
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