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Figure 11. (color online) Comparison between CLVisc and
VISH2+1 for momentum eccentricity
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where d⌃

µ

is a small piece of freeze-out hyper-surface
determined by the constant freeze-out temperature T

f

or constant freeze-out energy density "
f

. Particles pass
through the freeze out hyper-surface elements are as-
sumed to obey fermion/boson distribution at tempera-
ture T

f

with non-equilibrium correction �f ,
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where ± is for fermion/bosons respectively, µ
i

the e↵ec-
tive chemical potential in partial chemical equilibrium
EoS to fix the particle ratio when temperature is below
the chemical freeze-out temperature. µ

i

is set to 0 for
chemical equilibrium EoS.

Two methods are used to get the particle spectra on
the freeze out hypersurface. The first method is the
smooth particle spectra for N

Y

⇥N
pt

⇥N
�

= 41⇥15⇥48
tabulated (Y, p

T

,�) bins. The p
T

and � are chosen to
be the Gaussian Quadruture nodes, to make it easy to
get p

T

or � integrated spectra. In practice, there are
millions of small freeze-out hyper-surface elements d⌃

µ

,
which makes the spectra calculation quite cpu time con-
suming. Since the integration kernel in Eq. 68 is indepen-
dently calculated for di↵erent freeze out hyper-surface el-
ements before the summation, it is a perfect job to fit in
GPU parallel computing. If the Cooper-Frye integration
is only needed to perform once for all the hyper-surface,

Figure 12. Parallel reduction used on GPU to compute the
summation of particle spectra from millions of freeze-out
hyper-surface elements.

it can be done e↵ectively using the two step parallel re-
duction algorithm as shown in from Nvidia and AMD
SDK. In reality we need to do hyper-surface integration
308⇥41⇥15⇥48 times, it is quite slow to load each hyper-
surface element from global memory to private memory
so many times. In order to reduce the global memory
access, we share the hyper-surface elements in one work
group for multiple (pid, Y, p

T

,�) combinations. The cal-
culating time for 300 resonances is reduced from 8 hours
on a single core CPU to 3 minutes on the modern GPUs
like Nvidia K20 and AMD firepro S9150.
The second method is Monte Carlo sampling based on

Eq. 68. This method is similar to physical process and
the sampled particles can be redirected to hadron cascade
models like UrQMD, JAM and SMASH to simulate the
scattering and decays of hadron resonances. As a base-
line, we force the sampled resonances to decay to stable
particles immidiately after they are produced. Compar-
ing with this baseline one can distinguish the e↵ect of
hadronic rescaterring from resonance decay.
Since the particle number is Lorentz invariant, we can

sample particle in the comoving frame of fluid, then do
Lorentz boost according to the fluid velocity uµ. The
total number of hadrons produced from the freeze-out
hyper-surface is N = n ⇥ u · d⌃, where u · d⌃ is the in-
variant volume and n =

P
i

n
i

is the thermal density of
all hadrons in the co-moving frame. For systems without
bulk viscosity and net charge current (net baryon, net
electric charge or net strangeness), the thermal density
of hadron type i is fixed for one given freeze-out tem-
perature. In this case, the thermal densities n

i

for all
hadron species are computed in prior and tabulated for
e�ciency. While for systems with non-zero net charge
current and bulk viscosity, the thermal densities are dif-
ferent for hyper-surface elements that have di↵erent net
charge and bulk viscosity. In that case, the thermal den-
sity n

i

must be computed locally for each hyper-surface


