

Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech), Maurizio Pierini (CERN), Raghav Kunnawalkam Elayavalli (WSU), Rohan Bhandari (UCSB)

12th Dec 2017

Machine Learning for Jet Physics

11-13 December 2017
Lawrence Berkeley National Laboratory
US/Pacific timezone

Detector Level Correction

Jet Energy Correction necessary to correct for detector response

JINST 12 (2017) P02014

JEC as function of pT and eta available in the CMS QCD open data samples

anti- k_t R = 0.7 PF Jets

Regression with Scikit-learn

- Very simple random forest
- Minimal optimization on max.depth (currently = 11)

Motivation

- Train a Network —> Jet Energy Response
- Use CMS Open data for training

Regression of a 2D image to a continuous variable

Anti-k_T algorithm is used in most of CMS publications

FastJet

For instance, $\Delta \eta \times \Delta \phi$ 0.076 x 0.076 in barrel

jet clustering

Jet

Pre-Processing

- Common procedure to induce uniformity in training
- Rotation loses significant detector-level information

Setting up a DCW

- Creating Multiple convolutional filters
- The larger the filter the more physics it captures - reduces effect of sparsity

2D Convolutional Filter

Activation Function - Tanh

 Activation function dependent on the required output Multiple times for deep network

2D Convolutional Filter

Activation Function - Tanh

Details

- Convolution2D (20, 11,11)
- MaxPooling (2, 2)
- Convolution2D (10, 7,7)
- MaxPooling (3, 3)
- Convolution2D (8, 5,5)
- Convolution2D (6, 5,5)
- MaxPooling (2, 2)
- Convolution2D (4, 5, 5)
 - Tanh activation for conv2D
- Flatten
- Merge Jet Eta
 - 20 Dense layers w/ sigmoid
 - Dropout 0.08
- Merge Jet pT
 - 20 Dense Layers w/ soft plus
 - Dropout 0.08
- Output layer Linear activation
- Adam optimizer with mean squared error loss function

Predicting the Response

- Residuals as a function of the scaled jet eta, pT
- grid size : 30 x 30
- Effectively captures behavior with a smaller width

Can we go to smaller radii

- R = 0.5 jets require
 larger correction factor
- Model capable of reproducing similar levels of performance for R = 0.7
- Grid size is reduced to 25x25

Model Comparisons

- R = 0.7 Jets
- DCNN Jet Image w/ pT/eta (Mean Residual)

RF - Random Forests

```
models=random_forest_regression(fact
ors=factorNames,regressor='jtjec')
models.max_depth=20
models.n_trees=10
models.fit(new_df_train,True)
models.test(new_df_test,True)
```

MLP - MultiLayer Perceptron

```
model =
MLPRegressor(hidden_layer_sizes=[200
,200,200,200],activation='relu',rand
om state=12345)
```


What is the model learning? - I

- Residuals as function of energy carried by various jet constituents (charged, neutral hadron, photons)
- RF (all features) and DCNN showcase very good performance

0.04

RF - all featurs

RF - pt,eta Conv. NN

What is the model learning? - II

 Residuals as function of # or multiplicity of identified jet constituents (charged, neutral hadron, photons)

MLP

RF - all featurs

RF - pt,eta Conv. NN

0.04

0.02

0.00

-0.02

<residual>

Conclusions

- DCNN trained on jet images is effective in learning the detector response
- Fragmentation dependent response encoded in jet images are extracted
- With trained on Open data, one can build up such a resolutionunsmearing model for any experiment
- Currently training on the jet response, next steps is to train with generator level jet information
- Longer term goal would be to look at single jet JER uncertainty

Backup