A complete linear basis for (machine) learning jet substructure

Machine Learning for Jet Physics Workshop, 2017

Eric M. Metodiev

Center for Theoretical Physics Massachusetts Institute of Technology

Based on work with Patrick T. Komiske and Jesse Thaler

December 12, 2017

The Energy Flow Basis from IRC safety

Taming the (IRC-safe) Substructure Zoo

Spanning Substructure with Linear Regression

Eric M. Metodiev, MIT

Anatomy of an Energy Flow Polynomial:

Anatomy of an Energy Flow Polynomial:

Multigraph/EFP Correspondence

The Energy Flow Basis from IRC safety

Taming the (IRC-safe) Substructure Zoo

Spanning Substructure with Linear Regression

Eric M. Metodiev, MIT

EFPs linearly span IRC-safe observables

IRC-safe Observable

EFPs linearly span IRC-safe observables

EFPs linearly span IRC-safe observables

Organization of the basis

EFPs are truncated by angular degree *d*, the order of the angular expansion.

Finite number at each order in d!All prime EFPs up to d=5 ————

Online Encyclopedia of Integer Sequences (OEIS)

- <u>A050535</u> # of multigraphs with d edges # of EFPs of degree d
- A076864 # of connected multigraphs with d edges # of prime EFPs of degree d

Image files for all of the prime EFP multigraphs up to d = 7 are available here.

Exactly 1000 EFPs up to degree d=7!

The Energy Flow Basis from IRC safety

Taming the (IRC-safe) Substructure Zoo

Spanning Substructure with Linear Regression

Eric M. Metodiev, MIT

a fully general measure

The Energy Flow Basis from IRC safety

Taming the (IRC-safe) Substructure Zoo

Spanning Substructure with Linear Regression

Linear Models and Energy Flow

$$S = \sum_{G} w_{G} \underbrace{\text{EFP}_{G}}_{\text{Machine learn these}}$$

Linear methods:

Utilize the linear completeness of the Energy Flow basis.

Convex and few/no hyperparameters to tune.

Achieve global optimum via closed-form solution or convergent iteration.

Simple models with the minimum number of parameters/input.

Rich in tools and applications:

First few chapters of C. Bishop's Pattern Recognition and Machine Learning:

	3 Linear Models for Regression						
		3.1	Linear	Basis Function Models	138		
			3.1.1	Maximum likelihood and least squares	140		
			3.1.2	Geometry of least squares	143		
			3.1.3	Sequential learning	143		
Γhis	tal	k.	3.1.4	Regularized least squares	144		
			3.1.5	Multiple outputs	146		
	3.2 The Bias-Variance Decomposition 3.3 Bayesian Linear Regression						
			3.3.1	Parameter distribution	152		
			3.3.2	Predictive distribution	156		
			3.3.3	Equivalent kernel	159		
	1	3.4	Bayesi	ian Model Comparison	161		
	3.5 The Evidence Approximation				165		
			3.5.1	Evaluation of the evidence function	166		
			3.5.2	Maximizing the evidence function	168		
			3.5.3	Effective number of parameters	170		
	3.6 Limitations of Fixed Basis Functions						
		Exer	cises .		173		

4	Lin	ear Moo	lels for Classification	179			
	4.1	Discri	minant Functions	181			
		4.1.1	Two classes	181			
		4.1.2	Multiple classes	182			
		4.1.3	Least squares for classification	184	_		
		4.1.4	Fisher's linear discriminant	186	See P.	Komiske's	<u>talk</u>
		4.1.5	Relation to least squares	189			
		4.1.6	Fisher's discriminant for multiple classes	191			
		4.1.7	The perceptron algorithm	192			
	4.2	Probal	bilistic Generative Models	196			
		4.2.1	Continuous inputs	198			
		4.2.2	Maximum likelihood solution	200			
		4.2.3	Discrete features	202			
		4.2.4	Exponential family	202			
	4.3	Probal	bilistic Discriminative Models	203			
		4.3.1	Fixed basis functions	204			
		4.3.2	Logistic regression	205			
		4.3.3	Iterative reweighted least squares	207			
		4.3.4	Multiclass logistic regression	209			
		4.3.5	Probit regression	210			
		4.3.6	Canonical link functions	212			
	4.4	The L	aplace Approximation	213			
		4.4.1	Model comparison and BIC	216			
	4.5	Bayes	ian Logistic Regression	217			
		4.5.1	Laplace approximation	217			
		4.5.2	Predictive distribution	218			
	Exer	cises .		220			
Ν	літ				1	7	

Confirming Analytic Relationships with Regression

Linear Regression and IRC-safety

 $\frac{m_J}{p_{TJ}}$: IRC safe. No Taylor expansion due to square root.

 $\lambda^{(\alpha=1/2)}$: IRC safe. No simple analytic relationship.

 τ_2 : IRC safe. Algorithmically defined.

 τ_{21} : Sudakov safe. Safe for 2-prong jets and higher. A. Larkoski, S. Marzani, and J. Thaler, arXiv:1502.01719

 τ_{32} : Sudakov safe. Safe for 3-prong jets and higher.

Multiplicity: IRC unsafe.

Expected to be IRC safe = Solid. Expected to be IRC unsafe = Dashed.

6

 $\mathbf{5}$

 m_J/p_{TJ}

 $\chi(\alpha=1/2)$

 $(\beta = 1)$

 $\tau_{21}^{(\beta=1)}$

 $- \tau_{32}^{(\beta=1)}$

-▲- Mult.

Conclusions

EFPs form a complete, linear representation of the jet

- EFPs energy correlators with monomial angular structure
- Encompass many existing classes of expert variables
- Opens the door to using linear methods for jet substructure
- IRC-unsafe information? Combine!
 - Use EFPs & linearity to reduce radiation pattern to a single optimal observable

(Linear) Learning is easy

- Linear models are convex & even closed-form at times
- Few or no hyperparameters to tune at all
- Guaranteed global optima

The Energy Flow Basis from IRC safety

Taming the (IRC-safe) Substructure Zoo

Spanning Substructure with Linear Regression