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The LUX dark matter experiment
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250 kg liquid xenon  
target volume

Water shield, 
instrumented for 
muon veto

Low-radioactivity 
titanium cryostat

122 low-radioactivity 
photomultiplier tubes for 
high-efficiency light collection 

Located at Sanford Underground Research Facility (SURF) 
in Lead, South Dakota, USA

- 1480 m rock overburden shields background 
cosmogenic radiation
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Scintillation PSD analysis in LUX

Goals:

- Measure electron recoil and nuclear recoil scintillation time 
distributions at DM search energies 

- Develop pulse shape discriminant for use in future dark matter 
searches with LUX
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ER/NR calibration data
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Fast neutrons from D-D generator

- Collimated 2.45 MeV beam

- Elastic scatters → nuclear recoils 0 - 74 keV.

Beta decays from 3H and 14C source

- Methane with 3H or 14C dissolved into liquid 
xenon circulation system

- Source removed by standard purification 
system

- Populates detector uniformly with electron 
recoils from beta decay (0 - 150 keV)

Neutron beam

β sources 
dissolved in 
liquid xenon
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Photon timing algorithm
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1. Raw scintillation pulse in PMTs 2. Single-photon templates fit to 
waveforms

3. Times identified, corrections applied 4. Many pulses summed together to 
produce average histogram

LUX PRELIMINARY

[1 sample = 10ns] [1 sample = 10ns]

[1 sample = 10ns]

LUX PRELIMINARY



Brian Lenardo LIDINE 2017 September 22, 2017

Timing calibration using LEDs
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LUX PRELIMINARY

LED photon arrivals in a single channel 
(relative to LED pulser signal)

10% of peak height

Six blue LEDs (440nm) embedded in each PMT 
array at top and bottom of xenon volume.

Timing calibration procedure:
1. Pulse LEDs with 20 ns FWHM pulses to 

produce light at known times
2. Build distribution of photon arrivals in each 

channel
3. Use rising edge (10% height) as reference time 

to correct for relative timing offsets
4. Repeat with 4 different LEDs to compute 

uncertainties in calibration

Relative offsets between channels: ~20 ns
Uncertainty in calibration: σ = 2 ns 
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Modeling pulse shapes
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Detector effects:
- Timing resolution

- PMT transit time spread
- Uncertainties in timing calibrations
- Uncertainties from template fitting

- Optical transport 
- Modeled using optical simulations in 

Geant4
- Empirical analytic model fit to 

simulation

Liquid xenon physics:
- Ratio and time constants of 

singlet and triplet states
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Fitting to calibration data
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Averaged pulse shapes between 40-50 phd

Free Parameter Expected

(C1 1) / (C3 3)  for ER ~0.1

(C1 1) / (C3 3) for NR ~1.52 (at ~100 MeV)

1 2.2 - 4.3 ns *

3 for ER 21 - 27 ns *

3 for NR 21 - 27 ns *

σ ≥ 3.1 ns

* Range of measured values from Kubota (1978 & 
1979), and Hitachi (1983)

LUX PRELIMINARY

Fully convolved pulse shape model
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Fit results
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Parameter Expected Best fit ± stat. Fit sys. err. Optical sys. err.

(C1 1) / (C3 3)  for ER ~0.1 0.042 ± 0.006 ± 3.1% +75% / -66%

(C1 1) / (C3 3) for NR 1.52 (at ~100 MeV) 0.269 ± 0.034 ± 3.1% +20% / -10%

1 2.2 - 4.3 ns * 3.27 ± 0.66 ns ± 1% +11% / -70%

3 for ER 21 - 27 ns * 25.89 ± 0.06 ns ± 1.9% +0.5% / -0.6%

3 for NR 21 - 27 ns * 23.97 ± 0.17 ns ± 1.9% +0.1% / - 1.1%

σ ≥ 3.1 ns 3.59 ± 0.09 ns ± 1.1% ± 1.2%

LUX PRELIMINARY

* Range of measured values from Kubota (1978 & 1979), and Hitachi (1983)

Model is fitted to all histograms for ER and NR at all energies 
simultaneously

- Allows us to vary parameters common among different energy / 
particle type bins (i.e. σ, 1 , etc. )
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Singlet/triplet ratio energy dependence
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XMASS (0-field)
LUX (tritium)
LUX  (14C)
Kubota’79 (4kV/cm)

Only comparable value in 
literature is 1.52 for fission 
fragments at ~100 MeV

LUX (DD)

ER NR

Three important results: 
- NR ratio is much smaller at low energies than published measurements made 

at high energies
- ER ratio has no significant energy dependence under applied field
- NR may show energy dependence? Not prominent in our data

LUX PRELIMINARY

LUX PRELIMINARY
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Prompt fraction discriminator
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PSD accomplished through 
optimized prompt fraction

Also, built a toy MC that draws 
photon times from best-fit timing 
distribution and

- Adds fluctuations in PMT 
signal size

- Adds fluctuations in 5% area 
time from digitization

- Computes prompt fraction 
discrimination

LUX PRELIMINARY
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Prompt fraction discrimination
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Nuclear recoil
Electron recoil

Points: data ± 1
Lines: simulation ± 1

Profile of bands at S1 = 40-50 phd

Points: data
Line: simulationLUX PRELIMINARY

LUX PRELIMINARY

(detected photons)
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ER leakage into NR 50% acceptance region
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LUX PRELIMINARYLUX PRELIMINARY

LUX PRELIMINARY LUX PRELIMINARY
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Summary

- We are studying pulse shape discrimination for background rejection in 
dark matter analyses with LUX

- Built a framework for timing photon arrivals

- Used an analytic model to reconstruct singlet/triplet ratios at low 
energies (NR for the first time)

- Demonstrated prompt fraction discrimination with LUX calibration data

- Constructed a Monte Carlo model that reproduces ER/NR distributions, 
can be used in LUX simulations and analysis
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Back up
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WIMP dark matter

Weakly Interacting Massive Particles
- New neutral particle, beyond the standard 

model

- Weak-scale interaction cross-section gives us 
the right amount of dark matter

- Predicted to produce NUCLEAR RECOILS (no EM 
interactions)

- Most backgrounds ( ’s and β’s from radioactive 
decay) produce ELECTRON RECOILS
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WIMP scattering rate 
(assuming σ0 = 10-40 cm2)

m  = 10 GeV/c2

m  = 50 GeV/c2

m  = 100 GeV/c2

Assumptions
- Weak scale scattering cross section with nuclei
- Mass density ~ 0.3 GeV/c2/cm3

- Maxwellian velocity distribution with v0 = 220 km/s
- Velocity distribution truncated at galactic escape velocity
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Possible future searches with higher energy 
nuclear recoils

Dark matter inelastic scattering:
-  + N → * + N

- Kinematically suppresses low-energy 
recoils

These searches would require us to 
extend our acceptance at higher 
energies

Larger window could introduce 
new/more backgrounds
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 = 0 keV (elastic scattering)
 = 100 keV
 = 200 keV
 = 300 keV 

Inelastic DM scattering rate for different DM 
mass splittings (m  = 1 TeV, σ0 = 10-40 cm2)

Phys. Rev. D 94, 115026

Published LUX 
analysis region
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Liquid xenon TPC advantages

Low threshold
- Can detect events that produce 10’s 

of scintillation photons and 1’s of 
ionization electrons

Low background
- No long-lived radioactive xenon 

isotopes
- High-Z and high density provides 

self-shielding in large detectors
Scalable technology

- ~20 years development experience
- Ton-scale detectors are in operation 

Particle ID (ER/NR) capabilities
- Charge/light ratio (~99.9% rejection)
- PSD???

20

Log
10 (counts / keV

 / kg / day)

Self-shielding of backgrounds

ER/NR discrimination

NR band

ER calibration data

Squared radius
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LXe scintillation physics
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Hitachi 1983

Emission time (ns)

1.3 MeV electrons
At 0-field 

Alphas

Fission 
fragments

Long time component decreases 
with applied field

NEST model

Emission can be modeled as:

with three free parameters:
- Singlet time 1

- Triplet time 3

- Singlet/triplet ratio (C1 1 )/(C3 3 )

Recombination of electrons and ions can 
contribute to timing

- Only observed in electron recoils (ER)
- Suppressed by applied electric field and 

high LET at low energies
- NEST model (Mock et al.) predicts 

~1ns effect in LUX data
- We treat it as a different 3 for ER and NR

ER time constant vs. field

Plot from Mock et al. (2014)

Plot from Hitachi (1983)
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Optical transport
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Photons emitted at t=0 
uniformly in four bins:

- Top 
- Top center 
- Bottom center
- Bottom

LUX 
PRELIMINARY

A = direct-hit fraction
Ba = weights exponential terms
Bb = ( 1 - Ba )

a = long-time constant ( 11.2 ns )

b = short-time constant (varies to 
        fit short-time behavior)

Photons in LUX typically scatter before 
arriving in PMTs.

Studied using ray-tracing simulations in 
LUXSim (LUX Geant4 simulation package)

- Direct-path transit time subtracted
- Short-time behavior driven by 

geometric efficiency of bottom PMTs

Sims are fit to an analytic model for easy 
convolution and simulation.


