Liquid Xenon Scintillation Measurements and Pulse Shape Discrimination in the LUX Dark Matter Detector

Brian Lenardo UC Davis / LLNL LIght Detection In Noble Elements September 22, 2017

The LUX dark matter experiment

LIDINE 2017

122 low-radioactivity photomultiplier tubes for high-efficiency light collection

Scintillation PSD analysis in LUX

Goals:

- Measure electron recoil and nuclear recoil scintillation time distributions at DM search energies
- Develop pulse shape discriminant for use in future dark matter searches with LUX

ER/NR calibration data

Fast neutrons from D-D generator

- Collimated 2.45 MeV beam
- Elastic scatters \rightarrow nuclear recoils 0 74 keV.

Beta decays from ³H and ¹⁴C source

- Methane with ³H or ¹⁴C dissolved into liquid xenon circulation system
- Source removed by standard purification system
- Populates detector uniformly with electron recoils from beta decay (0 150 keV)

LUX PRELIMINARY

5

Photon timing algorithm

Timing calibration using LEDs

Six blue LEDs (440nm) embedded in each PMT array at top and bottom of xenon volume.

Timing calibration procedure:

- 1. Pulse LEDs with 20 ns FWHM pulses to produce light at known times
- 2. Build distribution of photon arrivals in each channel
- 3. Use rising edge (10% height) as reference time to correct for relative timing offsets
- 4. Repeat with 4 different LEDs to compute uncertainties in calibration

Relative offsets between channels: ~20 ns Uncertainty in calibration: $\sigma = 2$ ns

Modeling pulse shapes

Detector effects:

- Timing resolution
 - PMT transit time spread
 - Uncertainties in timing calibrations
 - Uncertainties from template fitting
- Optical transport
 - Modeled using optical simulations in Geant4
 - Empirical analytic model fit to simulation

Liquid xenon physics:

- Ratio and time constants of singlet and triplet states

$$\begin{cases} P_r = \frac{1}{\sqrt{2\sigma^2}} e^{-x^2/(2\sigma^2)} \\ P_o(t) = A \,\delta(t) + (1-A) \left[\frac{B_a}{\tau_a} e^{-t/\tau_a} + \frac{B_b}{\tau_b} e^{-t/\tau_a} \right] \\ P(t) = C_1 \, e^{-t/\tau_1} + C_3 \, e^{-t/\tau_3} \end{cases}$$

 τ_h

Fitting to calibration data

Fully convolved pulse shape model P(t) = $\sum_{i=1,3} \sum_{j=a,b} \frac{C_i A}{2} e^{\frac{\sigma^2}{2\tau_i^2} - \frac{t}{\tau_i}} \left[1 + \operatorname{erf}\left(\frac{t - \frac{\sigma^2}{\tau_i}}{\sigma\sqrt{2}}\right) \right] +$ $\frac{C_i (1 - A) B_j}{2(\frac{\tau_j}{\tau_i} - 1)} e^{\frac{\sigma^2}{2\tau_j^2} - \frac{t}{\tau_j}} \left[1 + \operatorname{erf}\left(\frac{t - \frac{\sigma^2}{\tau_j}}{\sigma\sqrt{2}}\right) \right] \frac{C_i (1 - A) B_j}{2(\frac{\tau_j}{\tau_i} - 1)} e^{\frac{\sigma^2}{2\tau_i^2} - \frac{t}{\tau_i}} \left[1 + \operatorname{erf}\left(\frac{t - \frac{\sigma^2}{\tau_j}}{\sigma\sqrt{2}}\right) \right]$

Free Parameter	Expected
$(C_1 \tau_1) / (C_3 \tau_3)$ for ER	~0.1
$(C_1 \tau_1) / (C_3 \tau_3)$ for NR	~1.52 (at ~100 MeV)
τ ₁	2.2 - 4.3 ns *
$\mathbf{\tau}_3^{}$ for ER	21 - 27 ns *
$\mathbf{\tau}_{3}^{}$ for NR	21 - 27 ns *
σ	≥ 3.1 ns

* Range of measured values from Kubota (1978 & 1979), and Hitachi (1983)

Fit results

Model is fitted to all histograms for ER and NR at all energies simultaneously

- Allows us to vary parameters common among different energy / particle type bins (i.e. σ , τ_1 , etc.)

LUX PRELIMINARY

Parameter	Expected	Best fit ± stat.	Fit sys. err.	Optical sys. err.
$(C_1 \tau_1) / (C_3 \tau_3)$ for ER	~0.1	0.042 ± 0.006	± 3.1%	+75% / -66%
$(C_1 \mathbf{r}_1) / (C_3 \mathbf{r}_3)$ for NR	1.52 (at ~100 MeV)	0.269 ± 0.034	± 3.1%	+20% / -10%
τ ₁	2.2 - 4.3 ns *	3.27 ± 0.66 ns	± 1%	+11% / -70%
$\mathbf{\tau}_{_{3}}$ for ER	21 - 27 ns *	25.89 ± 0.06 ns	± 1.9%	+0.5% / -0.6%
$\mathbf{\tau}_{_3}$ for NR	21 - 27 ns *	23.97 ± 0.17 ns	± 1.9%	+0.1% / - 1.1%
σ	≥ 3.1 ns	3.59 ± 0.09 ns	± 1.1%	± 1.2%

* Range of measured values from Kubota (1978 & 1979), and Hitachi (1983)

Singlet/triplet ratio energy dependence

Three important results:

- NR ratio is much smaller at low energies than published measurements made at high energies
- ER ratio has no significant energy dependence under applied field
- NR may show energy dependence? Not prominent in our data

Prompt fraction discriminator

PSD accomplished through optimized prompt fraction

Also, **built a toy MC** that draws photon times from best-fit timing distribution and

- Adds fluctuations in PMT signal size
- Adds fluctuations in 5% area time from digitization
- Computes prompt fraction discrimination

Prompt fraction discrimination

ER leakage into NR 50% acceptance region

Brian Lenardo

LIDINE 2017

September 22, 2017

Summary

- We are studying pulse shape discrimination for background rejection in dark matter analyses with LUX
- Built a framework for timing photon arrivals
- Used an analytic model to reconstruct singlet/triplet ratios at low energies (NR for the first time)
- Demonstrated prompt fraction discrimination with LUX calibration data
- Constructed a Monte Carlo model that reproduces ER/NR distributions, can be used in LUX simulations and analysis

Acknowledgements

The LUX collaboration Sanford Underground Research Facility (SURF)

LUX PSD subgroup

- Dev Ashish Khaitan (U of Rochester)
- Mongkol Moongweluwan (U of Rochester)
- Daniel Hogan (UC Berkeley)
- Prof. Matthew Szydagis (U Albany, SUNY)
- Dr. Kareem Kazkaz (LLNL)

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

The LUX collaboration

Berkeley Lab / UC Berkeley

Bob Jacobsen	PI, Professor
Murdock Gilcrease	Senior Scientist
Kevin Lesko	Senior Scientist
Michael Witherell	Lab Director
Peter Sorensen	Divisional Fellow
Simon Fiorucci	Project Scientist
Evan Pease	Postdoc
Daniel Hogan	Graduate Student
Kelsey Oliver-Mallory	Graduate Student
Kate Kamdin	Graduate Student

Brown University

Richard Gaitskell	PI, Professor
Junhui Liao	Postdoc
Samuel Chan	Graduate Student
Dongqing Huang	Graduate Student
Casey Rhyne	Graduate Student
Will Taylor	Graduate Student
James Verbus	Ex-Postdoc

University of Edinburgh

Alexander Murphy	PI, Professor
Paolo Beltrame	Ex-Research Fellow
Maria F. Marzioni	Graduate Student
Tom Davison	Graduate Student

Lawrence Livermore National Laboratory

Adam Bernstein	PI, RED group leader
Kareem Kazkaz	Physicist
Jingke Xu	Postdoc
Brian Lenardo	Graduate Student
1	

PI. Assistant Professor

S Stanislaus State

Wing To

Imperial College London

Henrique

Tim Sum Alastair C

Adam Bai

Khadeeja

Nellie Mar

Araujo	PI, Professor
ner	Professor
urrie	Ex-Postdoc
ley	Ex-Graduate Studer
Yazdani	Ex-Graduate Studer
rangou	Graduate Student

Dan Akerib	PI, Professor
Thomas Shutt	PI, Professor
Tomasz Biesiadzinski	Research Associate
Christina Ignarra	Research Associate
Alden Fan	Research Associate
Wei Ji	Graduate Student
TJ Whitis	Graduate Student

LIP Coimbra

Isabel Lopes	PI, Professor
José Pinto de Cunha	Assistant Professor
Vladimir Solovov	Senior Researcher
Alexandre Lindote	Postdoc
Francisco Neves	Auxiliary Researcher
Claudio Silva	Research Fellow
Paulo Bras	Graduate Student

200 PennState

Carmen Carmona

Emily Grace

Xinhua B

Douglas Tiedt

PI. Assistant Professor Postdoc

. Professor

Graduate Student

50	wines	
		D
ai		P

	SDSTA	/ Sanford Lab
David	Taylor	Senior Eng

Senior Engineer **Research Scientist**

UNIVERSITYATALBANY State University of New York

Matthew Szydagis	PI, Assistant Professo
Cecilia Levy	Postdoc
Jack Genovesi	Research Assistant

TEXAS A&M Ā M UNIVERSITY

PI. Professor Robert Webb Paul Terman Graduate Student

Berkeley

Markus Horn

Daniel Mckinsey Ethan Bernard **Elizabeth Boulton** Junsong Lin **Brian Tennyson** Lucie Tvrznikova Vetri Velan

UNIVERSITY OF CALIFORNIA

Mani Tripathi Aaron Manalaysay James Morad

Sergey Uvarov Jacob Cutter Dave Hemer

UC SANTA BARBARA

Harry Nelson	PI, Professor
Sally Shaw	Postdoc
Scott Haselschwardt	Graduate Student
Curt Nehrkorn	Graduate Student
Melih Solmaz	Graduate Student
Dean White	Engineer
Susanne Kyre	Engineer

University College London ≜UCI

Chamkaur Ghag Jim Dobson

Umit Utku

Graduate Student

PI, Professor

Postdoc

UNIVERSITY OF MARYLAND

Carter Hall Jon Balaithy

PI. Professor Graduate Student

Scott Hertel Christopher Nedlik PI, Assistant Professor Graduate Student

ROCHESTER

Frank Wolfs	PI, Professor
Wojtek Skulski	Senior Scientist
Eryk Druszkiewicz	Electrical Engineer
Dev Aashish Khaitan	Graduate Student
Mongkol Moongweluwan	Graduate Student

University of Sheffield

Vitaly Kudryavtsev	Reader, Particle Physics
Elena Korolkova	Research Associate
David Woodward	Research Associate
Peter Rossiter	Graduate Student

Dongming Mei

PI, Professor

Ex-Graduate Student Graduate Student Senior Machinist

Kimberly Palladino Shaun Alsum Rachel Mannino

Graduate Student Graduate Student

PI, Assistant Professor

Graduate Student

Postdoc

PI, Professor

Postdoc

Project Scientist

Graduate Student

Graduate Student

Back up

WIMP dark matter

Weakly Interacting Massive Particles

- New neutral particle, beyond the standard model
- Weak-scale interaction cross-section gives us the right amount of dark matter
- Predicted to produce NUCLEAR RECOILS (no EM interactions)
- Most backgrounds (γ's and β's from radioactive decay) produce ELECTRON RECOILS

γ, β

γ, β

Assumptions

- Weak scale scattering cross section with nuclei
- Mass density ~ 0.3 GeV/c²/cm³
- Maxwellian velocity distribution with $v_0 = 220$ km/s
- Velocity distribution truncated at galactic escape velocity

Brian Lenardo

70

Possible future searches with higher energy nuclear recoils

Dark matter inelastic scattering:

- $\chi + N \rightarrow \chi^* + N$
- Kinematically suppresses low-energy recoils

These searches would require us to extend our acceptance at higher energies

Larger window could introduce new/more backgrounds

LIDINE 2017

Liquid xenon TPC advantages

Low threshold

 Can detect events that produce 10's of scintillation photons and 1's of ionization electrons

Low background

- No long-lived radioactive xenon isotopes
- High-Z and high density provides self-shielding in large detectors

Scalable technology

- ~20 years development experience
- Ton-scale detectors are in operation

Particle ID (ER/NR) capabilities

- Charge/light ratio (~99.9% rejection)
- PSD???

LXe scintillation physics

Emission can be modeled as:

$$P(t) = C_1 e^{-t/\tau_1} + C_3 e^{-t/\tau_3}$$

with three free parameters:

- Singlet time τ_1
- Triplet time τ_3
- Singlet/triplet ratio $(C_1 \tau_1)/(C_3 \tau_3)$

Recombination of electrons and ions can contribute to timing

- Only observed in electron recoils (ER)
- Suppressed by applied electric field and high LET at low energies
 - NEST model (Mock et al.) predicts
 ~1ns effect in LUX data
- We treat it as a different τ_3 for ER and NR

1

LIDINE 2017

Optical transport

Photons in LUX typically scatter before arriving in PMTs.

Studied using ray-tracing simulations in LUXSim (LUX Geant4 simulation package)

- Direct-path transit time subtracted
- Short-time behavior driven by geometric efficiency of bottom PMTs

Sims are fit to an analytic model for easy convolution and simulation.

A = direct-hit fraction $B_a = \text{weights exponential terms}$ $B_b = (1 - B_a)$ $\tau_a = \text{long-time constant (11.2 ns)}$ $\tau_b = \text{short-time constant (varies to fit short-time behavior)}$

$$P_o(t) = A \,\delta(t) + (1 - A) \left[\frac{B_a}{\tau_a} \, e^{-t/\tau_a} + \frac{B_b}{\tau_b} \, e^{-t/\tau_b} \right]$$

International Conference on Applications of Nuclear Techniques (Crete17)

June 15, 2017