ﬁ TLAS

XPERIMENT

Continuous space models

Steve Farrell

HEP.TrkX Meeting

-~

(rreeer ‘m
crnesT OmLaNoe Lawnence May 22, 2017




Introduction

* Discrete space ideas have been fun, but they’ll face big challenges
* Hard to construct good “images”
* High dimensionality + sparsity
* | want to explore some ideas on continuous space data
» different from the seg2seq approach of JR+Dustin
* using the clustered pixel hits

* some ideas may carry over from pervious work



Continuous space hit classifier
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* Arrange sorted hit positions into a matrix X
* reasonable dimensionality, full precision
* Use a NN to classify the hits
* fully connected
 LSTM

e convolutional



Fully connected
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« Seeded single-track hit classification, with a window size of 5 hits
« Successfully classifies the hits on each layer, finding the correct one of the 5



LSTM
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* | just ran this in the last hour; undertrained, but it was converging

» converges faster than the FC, but slower than the CNN (next)




Convolutional network
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 CNN learns local functions of neighbor coordinates, capturing most of the important information

 Kind of a poor man’s graph convolutional network

* not using the closest neighboring hits, but the closest in the sorted hit matrix

* Works, trains a lot easier than the fully connected network



My plate

* Continuous space models

* https://culture-plate-sm.hep.caltech.edu:8193/notebooks/sfarrell/trackmi/Al-
HEP.Trk/gnn/Graph_dev.ipynb

* Just a little more work to demonstrate their effectiveness (e.g. try 3D)

* Graph convolutional neural network

* Need to do some exploratory work to figure out the best definition of
“neighborhood” and a weighting kernel

* I'll put together some slides to illustrate the relevant concepts

* ACTS digitization production
* |'ll put together a more useful output file (than the existing CSV one)

 then we can run our models on this


https://culture-plate-sm.hep.caltech.edu:8193/notebooks/sfarrell/trackml/AI-HEP.Trk/gnn/Graph_dev.ipynb

