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Electric Dipole Moments (EDMs)

Quantify the charge separation

Neutron is composed of
charged particles, so classically
an EDM could be expected

—q
From Griffiths, Introduction to Electrodynamics

If we suppose the separation of charges is about a 10t of the
neutron radius, we get [1]

d, ~1x 107 e.cm
but the experimental upper limit is
d, <3 x 107 e.cm



Discrete Symmetries in Quantum
Mechanics

* Discrete symmetries are charge (C), parity (P),
and time (T7)
* Discrete symmetry violation of general

Interest

— There are known amounts of CP violation in weak
interactions

 CPT theorem says violation of one implies
violation of other two, so total symmetry is
preserved



CP Violation from nEDM

E&M interaction Hamiltonian: H = —ji- B —d - E
Symmetry transformations of terms [2]:

— —

b B i or d
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Conclusion: nEDM e “ ﬂ,

violates CP symmetry
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Matter-antimatter asymmetry

e We observe more matter than antimatter in
the universe
— Unexpected from discrete symmetries

— Can be explained with CP violation (+non-
equilibrium conditions and baryon number
nonconservation)

— K,- and B-meson decays do not provide enough CP
violation for this explanation

e Conclusion: look for more sources of CP
violation



Possible Sources of CP Violation [3]
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Calculation of d,

Use non-relativistic SU(6) wavefunctions to
relate EDMs d,, ; or chromo-EDMS f, , to find

the contributions [4]
A" =3(4dy~ d,)

di¥=1e(3f;+31.)

Effective field theory [4]~ . . . R
QCD sum rules [3] ”\};" I M
Lattice QCD [5] S T S
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Fig. 1. Classes of loop diagrams contributing to d,: (a) with

one weak vertex, (b) with two weak vertices
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Constraints on New Physics

Standard model calculation gives d,, < 1 x 10733 e-.cm

Extensions to the standard
model all provide new (usually
larger) estimates for d,.
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Constraints on New Physics

Standard model calculation gives d,, < 1 x 10733 e-.cm

Extensions to the standard

model all provide new (usually

larger) estimates for d,.
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An Aside on B

2

* The B, termis %= —foco E_G. .G, G =BG,

32q2 ¥

Calculating nEDM with this term yields [4]
dp ~ 1071 x Ogep e-cm
Combined with experimental limit gives
@QC’D < 10710

Axionic dark matter an alternative explanation
for the tuning of this term
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Experimental Approach

e Return to the Hamiltonian H=—gG-B—d-E
e Basic approach is magnetic resonance
experiment [8]
BT,EiO_$L::,.w
oo R B 4d,E 0
F=0 hyl = ~2(4nB + du ) — h
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Neutron Precession Readout [7]
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First Attempt

* Smith, Purcell, and Ramsey used neutron

beams to make the first measurement in 1957
[8]: d, <5x107% e-cm

 Motional magnetic field effect limited the
sensitivity
— Extra magnetic field in neutron reference frame
that mimics EDM signal

— — ’17
C
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Ultracold Neutron Approach

* To limit motional magnetic field contribution,
the next generation of experiments used
ultracold neutrons (UCNSs):

v~ 100 m/s > v~7m/s
* Neutrons at this temperature are effectively

“bottled,” reflecting diffusely off of hard
container walls.

— Leads to an isotropic speed distribution, canceling
motional effects on average
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Nonzero Measurement!

* In the mid-80s, two UCN experiments
declared nonzero measurements [9]

— Institut Laue-Langevin (ILL) in Grenoble, France

and Petersburg Nuclear Physics Institute (PNPI) in
Gatchina, Russia.

— They agreed in sign and magnitude.

e Case closed!
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Nonzero Measurement!
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“The External Magnetometer

Problem” [9]

e Stray magnetic fields inside the storage cell
are really hard to control.

— Leakage currents, etc.

— Measuring the field
outside not precise
enough
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Record Holder — ILL Experiment

In 2006, the ILL Grenoble
experiment published the
world’s current upper limit
on the nEDM [10]:

d, < 3x107% e.cm

— Data taken between
1998 and 2002

— Analysis revised to
account for more
systematics in 2014
[11]; yielded similar
results.
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Mercury Comagnetometer

* Spin polarized °°Hg
subjected to rotating
magnetic field at
resonant frequency.

 EDM of the mercury
atom is known to be
small

* Gives volume- and
time-averaged
magnetic field during
measurement interval
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Magnetic Field (uT)

Comagnetometer results [7]

5x 10T
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Comagnetometer results [7]

Fitted slope =-3.83+ 0.08

1
N
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Fig. 18. Apparent neutron EDM signals (due to uncompensated random magnetic

field fluctuations) as a function of the corresponding apparent mercury EDM
signals.



Current and Future Efforts

* The Paul-
Scherrer Institut
(PSI) and PNPI
experiment at ILL
have produced
results recently

* Next gen:
superfluid
helium storage
at Oak Ridge
National Lab
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Superfluid Helium Approach

Inelastically
scattering neutrons

into superfluid el by
helium improves 3 4
density significantly
“He can support
larger electric fields

4 Layer y-metal Shield

3He serves as comagnetometer and readout system
Improve sensitivity by ~100

23



Alternative Methods?

e Crystal diffraction methods [9]
— Use effective electric field of scatterer
— Difficult to know angle and effective field well
— R&D Phase

* Cold molecular beams [12]

— Spin precession measurement on diatomic
molecules

— Similar to eEDM measurement techniques
— Some papers have been written
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