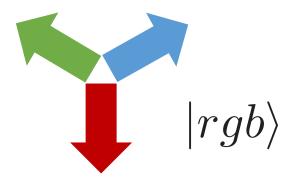

Search for glueballs

Peter Madigan

Outline

- Predictions from QCD
- Searching for the glueball (and why it's hard)
- Potential candidates
- The future

EM vs. strong bound states


	EM	Strong
Charge	+/-	r, g, b
Charge neutral bound state	Atoms	Mesons, Baryons
Force carrier	Photons	Gluons
Mass	0	0
Spin	1	1
Charge	0	≠ 0!

A important difference! The force carrier couples to itself, so can you create a charge neutral bound state of only gluons?

Confinement and color singlets

Due to QCD confinement, only color singlet states can exist:

- Baryons
- Mesons
- Exotic states could also exist:
- Tetraquark states
- Glueballs
- Eight gluon color combinations:
- 2+ gluons in a glueball

Symmetry predictions

Since gluons are spin 1 massless particles, so Two polarizations

- J = 0,2 for 2 gluon,
- J = 1,3 for 3 gluon

C parity

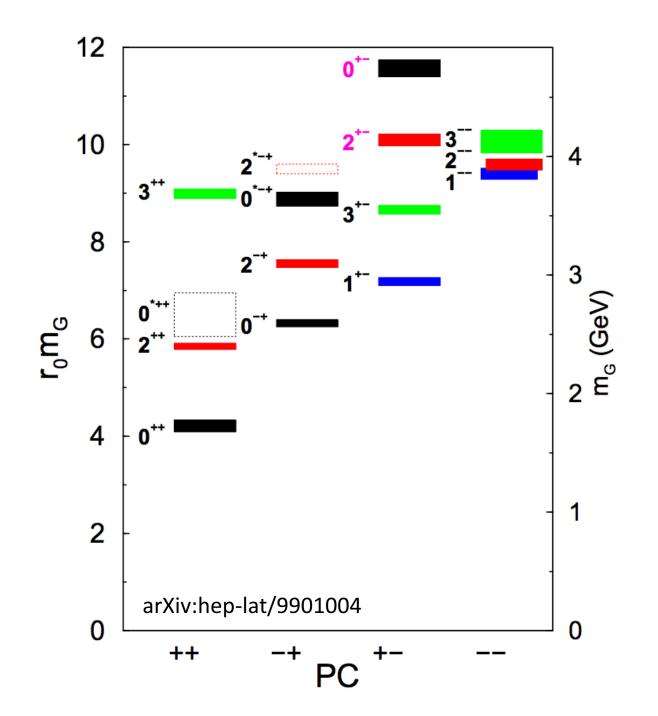
• C = +1/-1 for either

P parity

• P = +1/-1 for either

Expect states: 2 gluons: J^{PC} = 0⁺⁺, 0⁻⁺, 2⁺⁺ 3 gluons: 1⁺⁺, 1⁺⁻, 1⁻⁻, 3⁻⁻

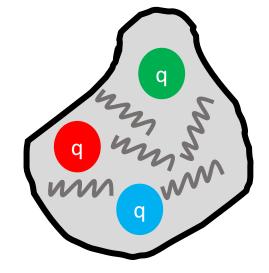
Lattice QCD predictions


$$C_{ij}(t) = \frac{1}{Z} \int d\psi \int d\bar{\psi} \int dU e^{-S_F - S_G} \langle 0 | O_i(t)^{\dagger} O_j(0) | 0 \rangle$$

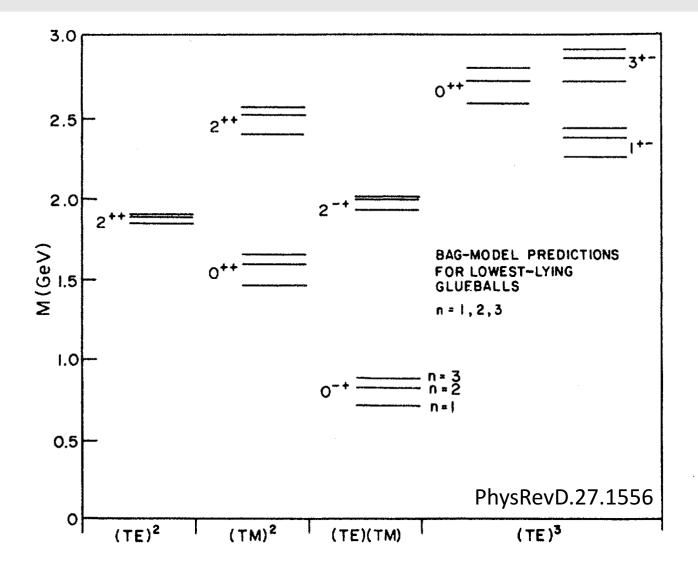
Generally, lattice QCD mass predictions come from the evaluation of the 2 point correlation functions

Glueball mass predictions are difficult because

- Glueball masses are relatively large
- Mixing between gluon/fermion degrees of freedom


As a first approximation, ignore quark loop contributions, a.k.a. quenched lattice QCD .

Bag model for gluons


Create a Lagrangian in the following way:

- 1. Select a region of space (bag)
- 2. Allow quarks and gluons to live in this bag (asymptotic freedom)
- 3. Don't let your quarks and gluons out of the bag (confinement)
- 4. Add a "bag" term to the lagrangian to account for the energy associated with creating your bag

5. Solve?

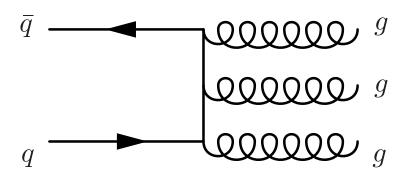
Bag model for gluons

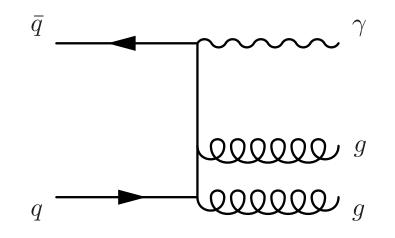
Combined expectations

- 1. Neutral particle
- 2. Lowest-lying glueball are likely scalar particles
- Both lattice QCD and bag model predicts energy around 1.5GeV for 0⁺⁺
- 4. Suppression of radiative decay

Where to search?

Gluon rich processes

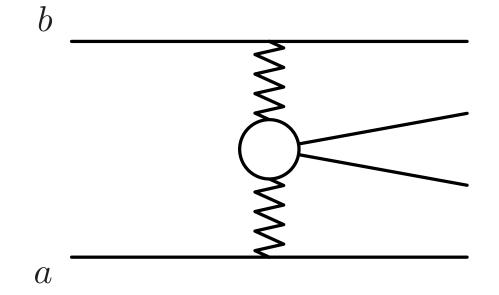

- Radiative J/psi decay
- Central region collision
- Proton-antiproton annihilation


Where to search?

Gluon rich processes

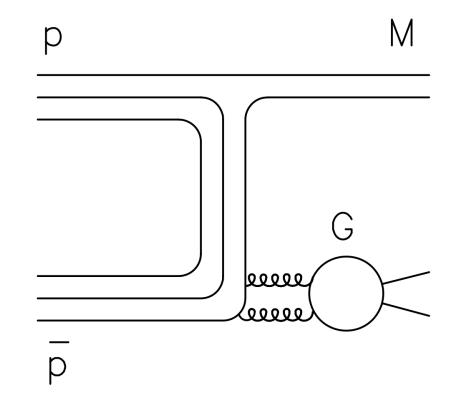
- Radiative J/psi decay
- Central region collision
- Proton-antiproton annihilation

OZI suppressed:



Where to search?

Gluon rich processes


- Radiative J/psi decay
- Central region collision
- Proton-antiproton annihilation

Where to search?

Gluon rich processes

- Radiative J/psi decay
- Central region collision
- Proton-antiproton annihilation

Candidates

•

- f₀(500) J^{PC}=0⁺⁺
- f₀(980) J^{PC}=0⁺⁺
- f₀(1370), f₀(1500), f₀(1710) J^{PC}=0⁺⁺
- X(1835) J^{PC}=0⁻⁺

 $f_0(500)$

Mass: 400-550MeV Decay: 2 pions or 2 photons

2 photon decay width: 2keV

Expected gluonic photon width: ~0.2keV (http://dro.dur.ac.uk/4243/1/4243.pdf)

Coupling to photons is greater than would be expected for a pure glueball

Mass: 990MeV

Decay: 2 pions, 2 Kaons, 2 photons $g_{K}^{2}/g_{pi}^{2} = 4.2$, BES collab in J/psi decays

coupling to K suggests a significant s component (<u>https://arxiv.org/pdf/1301.5183v3.pdf</u>)

Large s component and models can account for resonance without large glueball mixing

f₀(1370), f₀(1500), f₀(1710)

f₀(1370), f₀(1500) discovered by Crystal Barrel collaboration

- Fall into the region predicted by theory
- Produced in gluon-rich processes
- Small 2 photon widths
- Quark model predicts 2 f_0 states near $f_0(1500)$, but there are 3!

Glueball discovery!

Table 13:	Partial decay widths of the			
$f_0(1370)$ and $f_0(1500)$.				

	$f_0(1370)$	$f_0(1500)$	
Γ_{tot}	~ 350	~ 109	
$\Gamma_{\pi\pi}$	~ 90	~ 32	
$\Gamma_{\eta\eta}$	~ 1	~ 6	
$\Gamma_{\eta\eta'}$		~ 3	
$\Gamma_{ar{K}K}$	~ 50	~ 6	
$\Gamma_{4\pi}$	~ 210	~ 62	
$\Gamma_{\sigma\sigma}$	~ 106	~ 20	
$\Gamma_{ ho ho}$	~ 55	~ 10	
$\Gamma_{\pi^*\pi}$	~ 36	~ 25	
$\Gamma_{a_1\pi}$	~ 13	~ 7	

 $f_0(1370), f_0(1500), f_0(1710)$

Decay channels:

- Expect pi:eta eta:eta eta':K = 3:1:0:4
- None can be a *pure* glueball

Table 13:	Partial decay widths of the		
$f_0(1370)$ and $f_0(1500)$.			

	$f_0(1370)$	$f_0(1500)$
Γ_{tot}	~ 350	~ 109
$\Gamma_{\pi\pi}$	~ 90	~ 32
$\Gamma_{\eta\eta}$	~ 1	~ 6
$\Gamma_{\eta\eta'}$		~ 3
$\Gamma_{\bar{K}K}$	~ 50	~ 6
$\Gamma_{4\pi}$	~ 210	~ 62
$\Gamma_{\sigma\sigma}$	~ 106	~ 20
$\Gamma_{ ho ho}$	~ 55	~ 10
$\Gamma_{\pi^*\pi}$	~ 36	~ 25
$\Gamma_{a_1\pi}$	~ 13	~ 7

Glueball discovery?

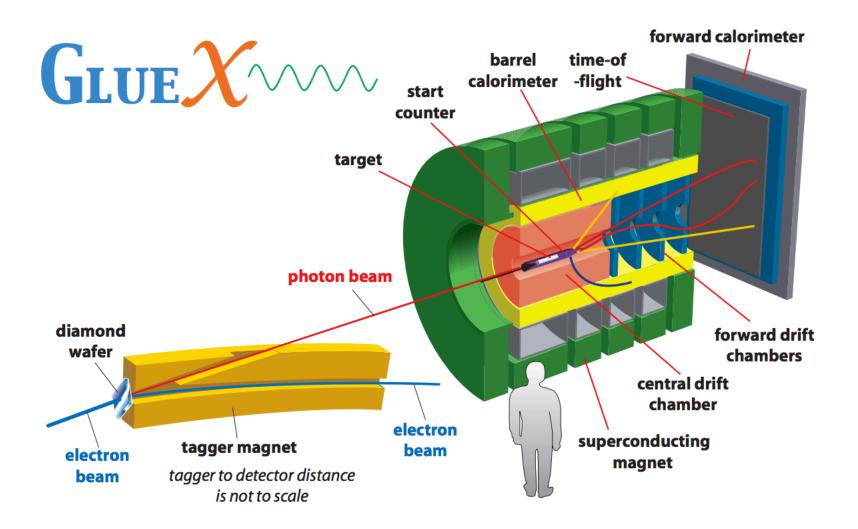
 $f_0(1370), f_0(1500), f_0(1710)$

Mixing between quark state and gluon state:

 $\cos\phi \left| q\bar{q} \right\rangle + \sin\phi \left| gg \right\rangle$

In PhysRevD.92.094006,

$\langle f_0(1370)\rangle \rangle$		(0.78 ± 0.02)	0.52 ± 0.03	-0.36 ± 0.01	($\langle N\rangle \rangle$
$ f_{0}(1500)\rangle$	=	-0.55 ± 0.03	0.84 ± 0.02	0.03 ± 0.02		$ S\rangle$
$\left< f_0(1710)\right> \right>$		0.31 ± 0.01	0.17 ± 0.01	0.934 ± 0.004		$ G\rangle$


 $f_0(1370), f_0(1500), f_0(1710)$

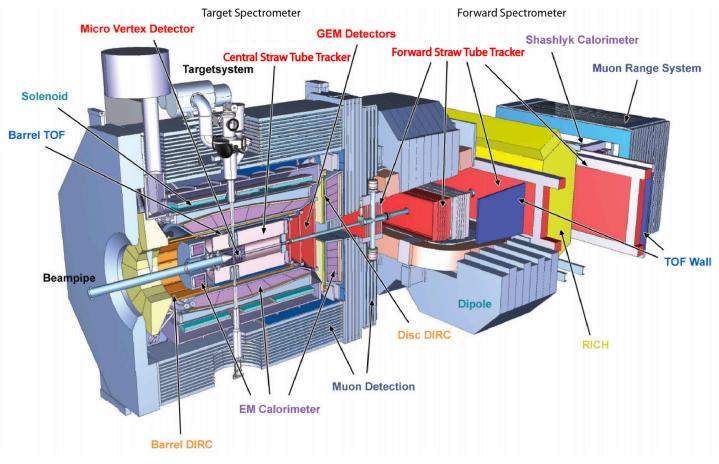
Mixing between quark state and gluon state:

 $\cos\phi \left| q\bar{q} \right\rangle + \sin\phi \left| gg \right\rangle$

In arXiv:hep-ph/0504033,

$$\begin{pmatrix} |f_1\rangle \equiv |f_0(1370)\rangle \\ |f_2\rangle \equiv |f_0(1500)\rangle \\ |f_3\rangle \equiv |f_0(1710)\rangle \end{pmatrix} = \begin{pmatrix} 0.86 & 0.45 & 0.24 \\ -0.45 & 0.89 & -0.06 \\ -0.24 & -0.06 & 0.97 \end{pmatrix} \begin{pmatrix} |N\rangle \equiv |\bar{n}n\rangle \\ |G\rangle \equiv |gg\rangle \\ |S\rangle \equiv |\bar{s}s\rangle \end{pmatrix}$$
swapped positions

Experiment located at the JLab accelerator


12GeV electron beamdelivers 40% polarized9GeV photons to liquidhydrogen target

Aim is to discover exotic meson states with $J^{PC} = 0^{+-}$, 1^{-+} , 2^{+-}

These exotic states could include glueballs

arXiv:1512.03699

PANDA

German experiment based at FAIR

Antiproton beam between 1.5GeV and 15GeV incident on target

Will search for glueballs through exotic J^{PC} states

Broad physics program from hypernuclei to nucleon structure

arXiv:1312.0953

Conclusion

- QCD says that glueballs *should* exist
- Glueballs are hard to find due to strong mixing with other quark states
- There are many observed particles that could be partially glueball states
- Looking for exotic quantum numbers could be where to find the "pure" glueball