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Jet Images
I 2D representation in η − φ space of a jet radiation pattern1

I Pixel intensity = pT = Ecell/cosh(ηcell) (non-trivial pre-processing)
I Produced with Pythia, clustered with FastJet, processed using

method described in 2

I Extensive literature on jet image discrimination3
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I Sparse (10-15%), with location-dependent properties, intensities
varying over ∼ 6 orders of magnitude

1J. Cogan et al., Jet-Images: Computer Vision Inspired Techniques for Jet
Tagging [arXiv:1407.5675]

2L. de Oliveira et al., Jet-Images - Deep Learning Edition [arXiv:1511.05190]
3[arXiv:1501.05968], [arXiv:1612.01551], [arXiv:1603.09349], [arXiv:1701.08784]
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GAN

I Generative Adversarial Networks4: a framework to
train deep generative models as a two player
non-cooperative game between a generator network, G, and
a discriminator network, D.

I System’s loss:

LS = E[log(P(D(I ) = 0 | I ∈ S))]︸ ︷︷ ︸
term associated with the discriminator
perceiving a generated sample as fake

+ E[log(P(D(I ) = 1 | I ∈ N ))]︸ ︷︷ ︸
term associated with the discriminator
perceiving a real sample as real

4I. J. Goodfellow et al., Generative Adversarial Networks, [arXiv:1406.2661]
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DCGAN and ACGAN
I Deep Convolutional Generative Adversarial

Networks5: CNNs work well with images in supervised
learning – let’s use them in GANs to generate new images

I Auxiliary Classifier Generative Adversarial
Networks6: add label conditioning as a second task to the
discriminator.

I Additional loss:

LC = E[log(P(C = c | I ∈ S))] + E[log(P(C = c | I ∈ N ))]

5A. Radford et al., Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, [arXiv:1511.06434]

6A. Odena et al., Conditional Image Synthesis With Auxiliary Classifier
GANs, [arXiv:1610.09585].
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Our Contribution
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LAGAN - Location Aware GAN
We propose:

1. using ACGAN framework to condition on class label
(signal = boosted W , background = QCD)

2. augmenting DCGAN framework with locally-connected
layers

Figure 1: Convolutional Layer Figure 2: Locally Connected Layer
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LAGAN (cont.)
3. leaky ReLU in G and D, ReLU in last layer of G to achieve sparsity
4. minibatch discrimination in the last layer of D to increase sample

diversity
5. batch normalization for training stability in light of the large

dynamical range
6. label flipping to reduce chances of mode collapse
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Training
I D tries to correctly identify images from G (fake) vs.

images sampled from the data distribution (real)
I G tries to fool D into thinking its images are real
I Alternate G and D training
I Equilibrium when G reproduces data distribution, D

outputs P(real)= 1/2 everywhere
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Physics Observables

Jet images offer clear techniques for evaluating GAN performance
→ many jet observables to reduce the 25× 25 feature space down to 1D
manifolds, preserved under generation
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LAGAN is reproducing 1D projections of the data distribution, but
it’s also internally using their representation for discrimination
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Discriminating Power

The model preserves the ”physics”, i.e. the ability to recover the
difference between boosted W bosons- and QCD-originated jet
images.
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The notion of 2-subjettiness and other radiation patterns are learned
early on in the G:
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Figure 3: Activations for the channels in the outputs of the two locally connected layers that
form G, highlighting the difference between the average signal and average background samples.
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Shortcomings

I Despite using label
flipping (5% for D, 9%
for G), our model still
produces very easily
classifiable images

I no in depth
exploration of gray
area between boosted
W and QCD
initiated jet images

I GAN images are not
yet a viable exclusive
substitute for a
classifier’s training
set

I but still useful for
data augmentation
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Figure 4: Normalized confusion
matrices with percentage of signal and
background images that the auxiliary
classifier successfully labels, for Pythia
images (left) and GAN images (right).
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Figure 5: Output of 2 MaxOut nets -
one trained on Pythia, one trained on
GAN images - evaluated on Pythia images
to discriminate W bosons from QCD.

13 / 17



Conclusions & Outlook
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Conclusions & Outlook

I Necessary but not sufficient conditions are met to warrant
further studies and research in this direction

I Future work:
I Include detector simulation
I Move from 2D to 3D
I Look at event images instead of single jet images
I Pythia correction to data via adversarial training
I Extend to other domains
I ...
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Backup
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Visual Inspection
Here is what GAN images look like compared to Pythia images:
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Figure 6: Randomly selected Pythia images (top row) and their
nearest generated neighbor (bottom row). 17 / 17
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