Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis

Authors: Michela Paganini Luke de Oliveira Benjamin Nachman Affiliations: Yale University, Berkeley Lab Berkeley Lab, VAI Technologies Berkeley Lab

February 8, 2017

1. Introduction

- Jet Images
- GAN, DCGAN, & ACGAN

2. Our Contribution

- LAGAN
- Performance Evaluation Techniques
- 3. Conclusions & Outlook
- 4. Backup

Introduction

Jet Images

- ▶ 2D representation in $\eta \phi$ space of a jet radiation pattern¹
- ▶ Pixel intensity = $p_T = E_{cell}/cosh(\eta_{cell})$ (non-trivial pre-processing)
- Produced with Pythia, clustered with FastJet, processed using method described in ²
- ▶ Extensive literature on jet image discrimination³

▶ Sparse (10-15%), with location-dependent properties, intensities varying over ~ 6 orders of magnitude

¹J. Cogan et al., Jet-Images: Computer Vision Inspired Techniques for Jet Tagging [arXiv:1407.5675]

²L. de Oliveira et al., Jet-Images - Deep Learning Edition [arXiv:1511.05190]
³[arXiv:1501.05968], [arXiv:1612.01551], [arXiv:1603.09349], [arXiv:1701.08784]

Generative Adversarial Networks⁴: a framework to train deep generative models as a two player non-cooperative game between a generator network, G, and a discriminator network, D.

System's loss:

$$\mathcal{L}_{S} = \underbrace{\mathbb{E}[\log(\mathbb{P}(D(I) = 0 \mid I \in S))]}_{\mathbb{E}[\log(\mathbb{P}(D(I) = 1 \mid I \in N))]} + \underbrace{\mathbb{E}[\log(\mathbb{P}(D(I) = 1 \mid I \in N))]}_{\mathbb{E}[\log(\mathbb{P}(D(I) = 1 \mid I \in N))]}$$

term associated with the discriminator perceiving a generated sample as fake

term associated with the discriminator perceiving a real sample as real

⁴I. J. Goodfellow et al., *Generative Adversarial Networks*, [arXiv:1406.2661]

DCGAN and ACGAN

- Deep Convolutional Generative Adversarial Networks⁵: CNNs work well with images in supervised learning – let's use them in GANs to generate new images
- Auxiliary Classifier Generative Adversarial Networks⁶: add label conditioning as a second task to the discriminator.

Additional loss:

 $\mathcal{L}_{C} = \mathbb{E}[\log(\mathbb{P}(C = c \mid I \in \mathcal{S}))] + \mathbb{E}[\log(\mathbb{P}(C = c \mid I \in \mathcal{N}))]$

⁵A. Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, [arXiv:1511.06434]

⁶A. Odena et al., Conditional Image Synthesis With Auxiliary Classifier GANs, [arXiv:1610.09585].

Our Contribution

LAGAN - Location Aware GAN

We propose:

- 1. using ACGAN framework to condition on class label (signal = boosted W, background = QCD)
- 2. augmenting DCGAN framework with **locally-connected** layers

Figure 1: Convolutional Layer

Figure 2: Locally Connected Layer

LAGAN (cont.)

- 3. leaky ReLU in G and D, ReLU in last layer of G to achieve sparsity
- 4. **minibatch discrimination** in the last layer of D to increase sample *diversity*
- 5. **batch normalization** for training *stability* in light of the large dynamical range
- 6. label flipping to reduce chances of mode collapse

Training

- ▶ *D* tries to correctly identify images from *G* (fake) vs. images sampled from the data distribution (real)
- G tries to fool D into thinking its images are real
- Alternate G and D training
- Equilibrium when G reproduces data distribution, D outputs $\mathbb{P}(\text{real})=1/2$ everywhere

Physics Observables

Jet images offer clear techniques for evaluating GAN performance \rightarrow many jet observables to reduce the 25 × 25 feature space down to 1D manifolds, preserved under generation

LAGAN is reproducing 1D projections of the data distribution, but it's also internally using their representation for discrimination

Discriminating Power

The model preserves the "physics", *i.e.* the ability to recover the difference between boosted W bosons- and QCD-originated jet images.

The notion of 2-subjettiness and other radiation patterns are learned early on in the G:

Figure 3: Activations for the channels in the outputs of the two locally connected layers that form G, highlighting the difference between the average signal and average background samples.

Shortcomings

- Despite using label flipping (5% for D, 9% for G), our model still produces very easily classifiable images
 - no in depth exploration of gray area between boosted W and QCD initiated jet images
 - GAN images are not yet a viable *exclusive* substitute for a classifier's training set
 - but still useful for data augmentation

Figure 4: Normalized confusion matrices with percentage of signal and background images that the auxiliary classifier successfully labels, for Pythia images (left) and GAN images (right).

Figure 5: Output of 2 MaxOut nets one trained on Pythia, one trained on GAN images - evaluated on Pythia images to discriminate W bosons from QCD.

Conclusions & Outlook

- Necessary but not sufficient conditions are met to warrant further studies and research in this direction
- ► Future work:
 - Include detector simulation
 - ▶ Move from 2D to 3D
 - Look at event images instead of single jet images
 - Pythia correction to data via adversarial training
 - Extend to other domains
 - **۱**...

Backup

Visual Inspection

Here is what GAN images look like compared to Pythia images:

Figure 6: Randomly selected Pythia images (top row) and their nearest generated neighbor (bottom row).