Fermilab Updates

Aristeidis Tsaris March 20, 2017

1

Overview

- 1st Part:
 - Look the residuals and color map them according to the number of tracks of the event that they came from.
 - Compare between Conv and Conv+LSTM.
 - Is there different mapping when you look the pattern recognition style, or when you go deeper in the track dynamics?

Overview

- 2nd Part:
 - The uniform noise is not realistic, add a smearing to the track and that way we can compare it to a linear fit for example.
 - Look events that fail the residuals (unreasonable large values).
 - Compare Conv with Conv + LSTM for 1 track events and "maximum 6 track events".

Same Parameters for both Conv and Conv+LSTM

Training parameters
batch_size = 64
epoch_size = 64000
num epochs = 30

Data parameters
det_width = 5
det_depth = 50
det_shape = (det_width, det_depth)

Number of tracks in each event follows Poisson distribution
mean_tracks = 3
max_tracks = 6

Training Performance

Aristeidis Tsaris (**\$**Fermilab)

NN with Conv layers

NN with Conv + LSTM layers

NN with Conv + LSTM layers Intercept of the track (color maps the number of tracks) Intercept of the track (color maps the number of tracks) ZOOM ZOOM З 3 2 2 1 1 w Residuals Residuals 0 0 3 $^{-1}$ $^{-1}$ -2 -2 -3 -3 -10 0 10 20 30 40 50 60 -10 0 10 20 30 40 50 60 Target Values Predicted Values Slope of the track (color maps the number of tracks) Slope of the track (color maps the number of tracks) 1.0 1.0 0.5 0.5 w Residuals Residuals 0.0 0.0 3 -0.5-0.5-1.0-1.0-1.5-1.5-1.0-1.5 -0.5 0.0 0.5 1.0 1.5 -1.00.0 0.5 1.0 1.5 -0.5-1.5Predicted Values Aristeidis Tsaris (Fermilab) Target Values

Smear the Track && LinFit

- When making the hits draw a random number from a normal distribution with width 1/Sqrt(12). This allows to go to the next pixel randomly and account the detector resolution.
- Then do a linear fit for each track separately. In that case we compare the fit of the track but not track finding.
- That way it is a fair comparison for single track events.

Smear the Track && LinFit

- When making the hits draw a random number from a normal distribution with width 1/Sqrt(12). This allows to go to the next pixel randomly and account the detector resolution.
- Then do a linear fit for each track separately. In that case we compare the fit of the track but not track finding.
- That way it is a fair comparison for single track events.

Training Performance

Aristeidis Tsaris (**‡** Fermilab)

NN with Conv Layers (Single Track Evt)

NN with Conv Layers (Single Track Evt)

Training Performance

Convolutional Layers + LSTM Single Track Events:

Convolutional Layers + LSTM Multi Track Events:

NN with Conv + LSTM Layers (Multi Track Evt) Residual distribution for LinFit: $\mu = 0.003$, $\sigma = 0.312$ 3.5 Residual distribution for LinFit: $\mu = -0.002$, $\sigma = 0.126$

NN with Conv + LSTM Layers (Multi Track Evt)

NN with Conv + LSTM Layers (Multi Track Evt)

NN with Conv + LSTM Layers (Multi Track Evt)

Summary && Future Work

<u>1st Part</u>

- Apart from the one track events, I do not see any obvious pattern for the number of tracks from the residuals.
- Clearly the Conv + LSTM does a much better job.
 <u>2nd Part</u>
- Not sure why the Conv + LSTM for one track gives a flat residual for the intercept. There might be an ambiguity.
- As expected almost the same events fail for convolutional layers and convolution + LSTM. I do not see any common topology of those events (maybe 0 slope?).

Summary && Future Work

- Not a fair comparison of LinFit Vs NN for multi track events.
 - We need a tool to map the output of NN to the true hits and then do the comparison with some criteria.
- Also, with the LinFit we test the Fit of track from NN but not efficiency of finding tracks.
 - Most likely not a simple way to compare it with a classic approach for the toy model. Suggestions?
- We can feed the result to a classic algorithm to continue the tracking and realistic test the performance.
- Move to a more realistic 3D detector to add more than one modules or to the ACTS data.