Hadron spectroscopy and structure from Lattice QCD

Chia Cheng Chang
Lawrence Berkeley National Laboratory

The Standard Model*

Modern picture with 28 free parameters

- gauge couplings (a_{s}, a_{w}, $a_{\text {Qeed }}$), masses ($m \mathrm{l}, \mathrm{m}_{\mathrm{q}}$), CKM and PNMS matrix, EWSB scale

Quantum Chromodynamics

Theory of the strong interaction Hadrons governed by QCD (which is most of our world!)

How our sun works!

$$
p+p \rightarrow d+e^{+}+\nu_{e}
$$

Particle decay

$$
B \rightarrow \pi+\ell+\nu
$$

Neutral meson oscillations

$$
K \rightarrow \bar{K}
$$

Experiments involving hadrons need theoretical input from QCD at typical hadronic energy which is non-perturbative

Lattice QCD spectroscopy

Outline

Generating data from a QCD simulation

- How to construct a hadron (spectroscopy)
- How to describe hadrons interactions (structure)

What did we actually simulate?! (it's messy)

- Spectral decomposition of correlation functions

How do we get physics from all this mess!

- A sample of some data analysis techniques

QCD vacuum on the computer

Numerically tackle QCD from Path Integral formulation
For any observable A

$$
\langle A\rangle=\frac{1}{Z} \int[d \psi][d \bar{\psi}][d U] A[\psi, \bar{\psi}, U] e^{-S_{U}-S_{D}}
$$

Wick-rotate to imaginary time
(integral becomes local so it fits on a computer)
(Very) High-dimensional integral (x, y, z, t, spin, color) Monte Carlo integration only affordable method
$U \sim e^{-S_{U}+\ln \operatorname{det}(\mathbb{D}+m)}$
(importance sampling)

Life on the Lattice*

weighted average is now a simple average
$\langle\Omega| A|\Omega\rangle \simeq \frac{1}{N} \sum_{n=1}^{N} A\left(U_{n}\right) \quad$ where $\quad U \sim e^{-S_{U}+\ln \operatorname{det}(\not D+m)}$
reuse gauge configurations for different $A \quad$ at 1 cent / cpu hour (otherwise calculations will be unaffordable) (electric bill) the U's (otherwise calculations will be unaffordable) cost millions of dollars

- valence quarks live on lattice sites
- sites are connected by links (gauge fields, parallel transport operators)
- observables are closed loops (gauge invar.) [hep-lat/0506036] (very good introductory paper to lattice QCD)

Making hadrons on the lattice

Have many observations of the QCD vacuum Now make a hadron!

What is a ground state pion? (look at PDG)

- two valence light quarks (isospin symmetric limit)
- spin zero
- angular momentum zero (s-wave)
- radial excitation zero

$$
J^{P}=0^{-}
$$

- negative parity

Guess the creation operator!

$$
\pi \equiv \bar{q}_{i}^{a} \gamma_{5}^{i j} q_{j}^{a}
$$

spherical symm. pseudoscalar no spin

Making correlation functions

Two-point correlation function
$C^{2 p t}(x, 0)=\left\langle T\left\{\bar{q}_{i}^{a}(x) \gamma_{5}^{i j} q_{j}^{a}(x) \bar{q}_{k}^{b}(0) \gamma_{5}^{k l} q_{l}^{b}(0)\right\}\right\rangle$
Rewrite as quark propagators $L_{i j}^{a b}(x, 0)=q_{i}^{a}(x) \bar{q}_{j}^{b}(0)$
$C^{2 p t}(x, 0)=-L_{l i}^{b a}(0, x) \gamma_{5}^{i j} L_{j k}^{a b}(x, 0) \gamma_{5}^{k l}$

$$
=-\operatorname{Tr}_{c, D}\left\{L^{\dagger}(x, 0) L(x, 0)\right\}
$$

Propagator is inverse of Dirac operator (a matrix)

This is how a correlation function is calculated!

Spectral decomposition

We calculated a pion + junk How do we get the pion out of this?

resolution of the identity

$$
1=\sum_{n} \frac{|n\rangle\langle n|}{2 E_{n}}
$$

the pion creation operator couples to radial excitations

$$
C^{2 p t}(t)=\sum_{n, m} \frac{1}{4 E_{n} E_{m}}\langle n| \bar{\pi} e^{-\hat{H}(t)}|m\rangle\langle m| \pi e^{-\hat{H}(T-t)}|n\rangle
$$

Spectral decomposition

Project out energy eigenstates
Assume zero temperature (Large box size in time)

$$
\begin{aligned}
C^{2 p t}(t) & =\sum_{n, m} \frac{1}{4 E_{n} E_{m}}\langle n| \bar{\pi} e^{-\hat{H}(t)}|m\rangle\langle m| \pi e^{-\hat{H}(T-t)}|n\rangle \\
& =\sum_{n, m} \frac{e^{-E_{m} t} e^{-E_{n}(T-t)}}{4 E_{n} E_{m}}\langle n| \bar{\pi}|m\rangle\langle m| \pi|n\rangle \\
& \simeq \sum_{n}\left[\frac{e^{-E_{n} t}}{2 E_{n}}\langle\Omega| \bar{\pi}|n\rangle\langle n| \pi|\Omega\rangle+\frac{e^{-E_{n}(T-t)}}{2 E_{n}}\langle\Omega| \pi|n\rangle\langle n| \bar{\pi}|\Omega\rangle\right]
\end{aligned}
$$

We have an infinite sum of exponentials...

Getting the pion mass

We have 1) data 2) spectral decomposition
$C^{2 p t}(t)=-\sum_{\vec{x}} \operatorname{Tr}_{c, D}\left\{L^{\dagger} L\right\} \quad C^{2 p t}(t) \simeq \sum_{n} \frac{Z_{n}^{2}}{2 E_{n}} e^{-E_{n} t}$

Data distribution

We want the distribution of the mean
central limit theorem promises multivariate normal

$$
\begin{aligned}
P\left(C_{t} \mid Z, E\right) & =\frac{1}{\sqrt{(2 \pi)^{\nu}|\Sigma|}} e^{-\frac{1}{2}(y-\mu)_{t_{1}} \Sigma_{t_{1}, t_{2}}^{-1}(y-\mu)_{t_{2}}} \\
& \propto e^{-\chi_{\text {data }}^{2} / 2}
\end{aligned}
$$

where $\quad \Sigma$ is the standard error of the mean squared

$$
\Sigma_{t_{1}, t_{2}}=\frac{1}{N}\left[\frac{1}{N} \sum_{i, j}^{N}\left(C_{i}-\mu\right)_{t_{1}}\left(C_{j}-\mu\right)_{t_{2}}\right]
$$

Getting mass the frequentist way

Perform a maximum likelihood estimate of parameters
Likelihood = Probability of finding data given parameters

$$
L \sim e^{-\frac{1}{2}\left[C^{2 p t}(t)-\overline{\operatorname{data}}(t)\right]^{T} \Sigma^{-1}\left[C^{2 p t}(t)-\overline{\mathrm{data}}(t)\right]}
$$

Minimize the χ^{2} to get best fit to data

Take data and try to fit with (truncate the sum)

$$
C^{2 p t}(t) \simeq \sum_{n} \frac{Z_{n}^{2}}{2 E_{n}} e^{-E_{n} t}
$$

Getting mass the frequentist way

Frequentist error estimation

Bootstrap resampling original data

boot0

fit this data get results for fit parameters (masses, etc)

Bootstrap histograms

Result of the bootstrap resampling on a fit parameter

Reconstruct fit with bootstrap

the rest died by $t=3$

Bayesian constraint curve fit

sum of exponentials is ill-conditioned motivate constraint via Bayes theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

mean distribution of fit parameters are normal also

$$
P(Z, E) \propto e^{-\chi_{\text {prior }}^{2} / 2}
$$

- we have approximate conjugate priors
- normalization factor is trivial
we do not need MC to obtain the posterior distribution

$$
P\left(Z, E \mid C_{t}\right) \propto e^{-\left(\chi_{\text {data }}^{2}+\chi_{\text {prior }}^{2}\right) / 2}
$$

Prior constraints

Ground state energy

Ground state overlap

Excited state energy ~ Roper resonance
Excited state overlap ~ same order of magnitude

Stability plot

Ok... for this dataset $t=3$ is the best we can do...

Structure calculations

Understand how hadrons interact with other particles

Nucleon axial charge

Benchmark calculation of lattice QCD for nuclear physics

Simplest structure calculation for baryons Lattice calculations systematically low (problem!)

Three-point correlation functions

Insert axial-vector current between nucleons

same propagator
sequential propagators invert off hadronic sink source-sink separation has to be fixed as a result can insert any current once propagators are created

PNDME nucleon axial current

At fixed $t_{\text {sep }}$ excited state contamination is sum of constants

excited states disappear at large $\mathrm{t}_{\text {sep }}$ where large is not large enough
signal degrades exponentially
better data generation? better analysis?

Feynman-Hellmann Theorem

Matrix elements are related to variations in the spectrum with respect to an external source

$$
\frac{\partial E_{n}}{\partial \lambda}=\langle n| H|n\rangle
$$

where

$$
S=S_{\mathrm{QCD}}+S_{\lambda}
$$

The external source is

$$
S_{\lambda}=\lambda \int d^{4} x j(x)
$$

of some bilinear current density (e.g. axial-vector current)
An interesting new way to calculate nucleon structure

FHT on the lattice

Reminder: Effective mass

$$
m^{e f f}(t)=\ln \frac{C(t)}{C(t+1)}
$$

Take the analytic derivative w.r.t. external source

$$
\left.\frac{\partial m^{e f f}}{\partial \lambda}\right|_{\lambda=0}=\left.\left[\frac{\partial_{\lambda} C_{\lambda}(t+1)}{C_{\lambda}(t+1)}-\frac{\partial_{\lambda} C_{\lambda}(t)}{C_{\lambda}(t)}\right]\right|_{\lambda=0}
$$

where

$$
\begin{aligned}
-\left.\partial_{\lambda} C_{\lambda}(t)\right|_{\lambda=0}= & -C(t) \int d t^{\prime}\langle\Omega| J\left(t^{\prime}\right)|\Omega\rangle \\
& +\int d t^{\prime}\langle\Omega| T\left\{N(t) J\left(t^{\prime}\right) N^{\dagger}(0)\right\}|\Omega\rangle
\end{aligned}
$$

First term vanishes unless it is a scalar current Second term is sequential propagator through the current

Feynman-Hellmann propagator

propagators
Current is point-like so sum over time (and space) is valid Generate data as a function of source-sink separation

Spectral decomposition

signal artifacts from summing over all current time
Go to Heisenberg picture and insert identity...

$$
\begin{aligned}
\left.\partial_{\lambda} C_{\lambda}(t)\right|_{\lambda=0}= & \sum_{n}\left[(t-1) z_{n} g_{n n} z_{n}^{\dagger}+d_{n}\right] e^{-E_{n} t} \\
& +\sum_{n \neq m} z_{n} g_{n m} z_{m}^{\dagger} \frac{e^{-E_{n} t} e^{\Delta_{n m} / 2}-e^{-E_{m} t} e^{\Delta_{m n} / 2}}{e^{\Delta_{m n} / 2}-e^{\Delta_{n m} / 2}}
\end{aligned}
$$

luckily all the artifacts can be absorbed into d_{n} ${ }_{29}^{29}$ still the spectral decomposition is quite daunting

Feynman-Hellmann fits

Just be brave

$v-N$ quasi-elastic scattering

Llwewllyn-Smit formalism

$$
\frac{d \sigma}{d Q^{2}}\binom{\nu n \rightarrow \ell^{-} p}{\bar{\nu} p \rightarrow \ell^{+} n}=\frac{M_{N}^{2} G_{F}^{2}\left|V_{u d}\right|^{2}}{8 \pi E_{\nu}^{2}}
$$

$$
\times\left[A\left(Q^{2}\right) \mp B\left(Q^{2}\right) \frac{s-u}{M_{N}^{2}}+\frac{C\left(Q^{2}\right)(s-u)^{2}}{M_{N}^{4}}\right]
$$

$$
\begin{aligned}
& \ell \xrightarrow{ } \begin{array}{l}
\text { form factors } \\
\\
\sim F_{1}\left(Q^{2}\right), F_{2}\left(Q^{2}\right), F_{A}\left(Q^{2}\right)
\end{array} \\
& p \quad F_{A}\left(Q^{2}\right)=g_{A}\left(1+\frac{Q^{2}}{M_{A}^{2}}\right)^{-2}
\end{aligned}
$$

$\sim 1 \%$ uncertainty for g_{A} before isospin \& EM effects dominate

Proton charge radius

Gordon decomposition of vector current

$$
\begin{aligned}
\langle 0| V_{4}\left|q_{3}\right\rangle & =\bar{u}(0)\left(\gamma_{4} F_{1}\left(Q^{2}\right)+\frac{i}{2 M_{N}} \sigma_{43} q^{3} F_{1}\left(Q^{2}\right)\right) u\left(q_{3}\right) \\
& =2 E_{N} F_{1}\left(Q^{2}\right)
\end{aligned}
$$

calculate slope of F_{1} on the lattice
$\left.\frac{\partial G_{E}\left(Q^{2}\right)}{\partial Q^{2}}\right|_{Q^{2}=0}=-\frac{1}{6}\left\langle r^{2}\right\rangle=\left.\frac{\partial F_{1}\left(Q^{2}\right)}{\partial Q^{2}}\right|_{Q^{2}=0}-\frac{F_{2}(0)}{4 M_{N}^{2}}$
7σ experimental e vs. μ discrepancy
$\sim 2 \%$ uncertainty can discriminate 4\% exp. difference
lattice can provide model independent values for radii

Moment methods

Relate spatial moments to momentum derivatives

Issues with moment methods:
Wilcox - Moments on lattice yields wrong ground state.
[0204024v1]
Existing methods:
Isgur-Wise slope - position space method [9410013] HVP - time moment current current correlator [1403.1778v2]
Rome - expand lattice operators
[1208.5914v2][1407.4059]
ETMC - position space method
Most existing methods take $\partial / \partial q_{j}$ derivatives all at $q^{2}=0$ Our method takes $\partial / \partial q^{2}$ generalized to all momenta

Kinematic setup

Work done in collaboration with W\&M JLab [1610.02354]

For charge radius $A=B=N^{a}$ the nucleon interp. operator

Two-point correlator and moment

two-point correlator

$$
C_{2 \mathrm{pt}}(t)=\sum_{\vec{x}}\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle e^{-i k x_{z}}
$$

two-point moment

$$
\begin{aligned}
C_{2 \mathrm{pt}}^{\prime}(t) & =\sum_{\vec{x}} \frac{-x_{z}}{2 k} \sin \left(k x_{z}\right)\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle \\
\lim _{k^{2} \rightarrow 0} C_{2 \mathrm{pt}}^{\prime}(t) & =\sum_{\vec{x}} \frac{-x_{z}^{2}}{2}\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle
\end{aligned}
$$

only have even spatial moments

Three-point correlator and moment

three-point correlator

$$
C_{3 \mathrm{pt}}\left(t, t^{\prime}\right)=\sum_{\vec{x}, \vec{x}^{\prime}}\left\langle N_{t, \vec{x}}^{a} \Gamma_{t^{\prime}, \vec{x}^{\prime}} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle e^{-i k x_{z}^{\prime}}
$$

three-point moment

$$
\begin{aligned}
C_{3 \mathrm{pt}}^{\prime}\left(t, t^{\prime}\right) & =\sum_{\vec{x}, \vec{x}^{\prime}} \frac{-x_{z}^{\prime}}{2 k} \sin \left(k x_{z}^{\prime}\right)\left\langle N_{t, \vec{x}}^{a} \Gamma_{t^{\prime}, \vec{x}^{\prime}} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle \\
\lim _{k^{2} \rightarrow 0} C_{3 \mathrm{pt}}^{\prime}\left(t, t^{\prime}\right) & =\sum_{\vec{x}, \vec{x}^{\prime}} \frac{-x_{z}^{\prime 2}}{2}\left\langle N_{t, \vec{x}}^{a} \Gamma_{t^{\prime}, \vec{x}^{\prime}} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle
\end{aligned}
$$

moments are with respect to current insertion
given correlators, moments are computationally free

Spectral decomposition

two-point fit function
$C_{2 \mathrm{pt}}(t)=\sum_{m} \frac{Z_{m}^{b \dagger}\left(k^{2}\right) Z_{m}^{b}\left(k^{2}\right)}{2 E_{m}\left(k^{2}\right)} e^{-E_{m}\left(k^{2}\right) t}$
two-point moment fit function
$C_{2 \mathrm{pt}}^{\prime}(t)=\sum_{m} C_{m}^{2 \mathrm{pt}}(t)\left(\frac{2 Z_{m}^{b \prime}}{Z_{m}^{b}}-\frac{1}{2\left[E_{m}\left(k^{2}\right)\right]^{2}}-\frac{t}{2 E_{m}\left(k^{2}\right)}\right)$
definitions
$Z_{m}^{b}\left(k^{2}\right) \equiv\left\langle m, p_{i}=(0,0, k)\right| \bar{N}^{b}|\Omega\rangle$
$E_{m}\left(k^{2}\right)=\sqrt{M_{m}^{2}+k^{2}}$
$Z_{m}^{b \prime}=0$ for point source/sink two-point constrains all parameters except $Z_{m}^{b \prime}$

More spectral decomposition

three-point fit function

$$
C_{3 \mathrm{pt}}\left(t, t^{\prime}\right)=\sum_{n, m} \frac{Z_{n}^{a \dagger}(0) \Gamma_{n m}\left(k^{2}\right) Z_{m}^{b}\left(k^{2}\right)}{4 M_{n} E_{m}\left(k^{2}\right)} e^{-M_{n}\left(t-t^{\prime}\right)} e^{-E_{m}\left(k^{2}\right) t^{\prime}}
$$

three-point moment fit function

$$
C_{3 \mathrm{pt}}^{\prime}\left(t, t^{\prime}\right)=\sum_{n, m} C_{n m}^{3 \mathrm{pt}}\left(t, t^{\prime}\right)\left\{\frac{\Gamma_{n m}^{\prime}}{\Gamma_{n m}}+\frac{Z_{m}^{b \prime}}{Z_{m}^{b}}-\frac{1}{2 E_{m}^{2}}-\frac{t^{\prime}}{2 E_{m}}\right\}
$$

$2 p t$ and 3pt constraints all params. except slopes 2pt moment needed for smeared source/sink 3pt moment constrains slope of form factor

Slope of nucleon vector form factor

Summary and Outlook

Lattice QCD is the only first principles method for studying spectroscopy and structure of hadrons

Hadronic matrix elements are essential for interpreting experimental results

Improved lattice calculation involves finding ever smarter ways to generate data (on top of hardware development)

Sophisticated analysis techniques are needed to extract the most out of very expensive data

Analysis and computing skills are very sexy in the Bay Area

