
Hadron spectroscopy and 
structure from Lattice QCD

Chia Cheng Chang 
Lawrence Berkeley National Laboratory

1



The Standard Model*
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Modern picture with 28 free parameters 
• gauge couplings (αs, αW, αQED), masses (ml, mq), CKM 

and PNMS matrix, EWSB scale

*of particle physics



Quantum Chromodynamics
Theory of the strong interaction 
Hadrons governed by QCD (which is most of our world!) 

How our sun works! 

Particle decay 

Neutral meson oscillations 

Experiments involving hadrons need theoretical input from 
QCD at typical hadronic energy which is non-perturbative

p+ p ! d+ e+ + ⌫e

B ! ⇡ + `+ ⌫

K ! K̄
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Lattice QCD spectroscopy
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B mesons offset by −4000 MeV

updated version of the plot in [hep-lat/1203.1204] 
very good summary of modern lattice QCD results 



Outline
Generating data from a QCD simulation 
• How to construct a hadron (spectroscopy) 
• How to describe hadrons interactions (structure) 

What did we actually simulate?! (it’s messy) 
• Spectral decomposition of correlation functions 

How do we get physics from all this mess! 
• A sample of some data analysis techniques
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QCD vacuum on the computer
Numerically tackle QCD from Path Integral formulation 

For any observable A 

Wick-rotate to imaginary time 
(integral becomes local so it fits on a computer) 

(Very) High-dimensional integral (x, y, z, t, spin, color) 
Monte Carlo integration only affordable method 

(importance sampling)
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hAi = 1

Z

Z
[d ][d ̄][dU ]A[ ,  ̄, U ]e�SU�SD

U ⇠ e�SU+ln det( /D+m)



Life on the Lattice*
weighted average is now a simple average 

                                           where 

reuse gauge configurations for different A 
(otherwise calculations will be unaffordable)
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*fun lattice blog to read 
http://latticeqcd.blogspot.com/

h⌦|A|⌦i ' 1

N

NX

n=1

A(Un) U ⇠ e�SU+ln det( /D+m)

at 1 cent / cpu hour 
(electric bill) the U’s 

cost millions of dollars

[hep-lat/0506036] (very good introductory paper to lattice QCD)

• valence quarks live on lattice sites 
• sites are connected by links (gauge fields, 

parallel transport operators) 
• observables are closed loops (gauge invar.)



Making hadrons on the lattice
Have many observations of the QCD vacuum 
Now make a hadron! 

What is a ground state pion? (look at PDG) 
• two valence light quarks (isospin symmetric limit) 
• spin zero 
• angular momentum zero (s-wave) 
• radial excitation zero 
• negative parity 

Guess the creation operator!
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JP = 0�

π
spherical symm. 
pseudoscalar 
no spin

⇡ ⌘ q̄ai �
ij
5 qaj



Making correlation functions
Two-point correlation function 

Rewrite as quark propagators 

Propagator is inverse of Dirac operator (a matrix) 

This is how a correlation function 
is calculated!
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Spectral decomposition
We calculated a pion + junk 
How do we get the pion out of this? 
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T 0

π

π
t

e�Ĥ(t�0)

e�Ĥ(T�t)

resolution of the identity 

the pion creation operator 
couples to radial excitations

1 =
X

n

|nihn|
2En

C2pt(t) =
X

n,m

1

4EnEm
hn|⇡̄e�Ĥ(t)|mihm|⇡e�Ĥ(T�t)|ni



Spectral decomposition
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C2pt(t) =
X

n,m

1

4EnEm
hn|⇡̄e�Ĥ(t)|mihm|⇡e�Ĥ(T�t)|ni

=
X

n,m

e�Emte�En(T�t)

4EnEm
hn|⇡̄|mihm|⇡|ni

'
X

n


e�Ent

2En
h⌦|⇡̄|nihn|⇡|⌦i+ e�En(T�t)

2En
h⌦|⇡|nihn|⇡̄|⌦i

�

Project out energy eigenstates 

Assume zero temperature (Large box size in time) 

We have an infinite sum of exponentials…



We have 1) data 2) spectral decomposition 

Getting the pion mass
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C2pt(t) = �
X

~x

Tr
c,D

{L†L} C2pt(t) '
X

n

Z2
n

2En
e�Ent

meff (t) = ln
C(t)

C(t+ 1)

⇠ 0.82 ⇡ 1080 MeV
(this is a proton)



We want the distribution of the mean 

central limit theorem promises multivariate normal

⌃t1,t2 =
1

N

2

4 1

N

NX

i,j

(Ci � µ)t1(Cj � µ)t2

3

5

where         is the standard error of the mean squared⌃

P (Ct|Z,E) =
1p

(2⇡)⌫ |⌃|
e�

1
2 (y�µ)t1⌃

�1
t1,t2

(y�µ)t2

/e��2
data/2

Data distribution



Perform a maximum likelihood estimate of parameters 

Likelihood = Probability of finding data given parameters 

Minimize the        to get best fit to data 

Take data and try to fit with 
(truncate the sum)

Getting mass the frequentist way
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C2pt(t) '
X

n

Z2
n

2En
e�Ent

L ⇠ e�
1
2 [C

2pt(t)�data(t)]T⌃�1[C2pt(t)�data(t)]

�2



Getting mass the frequentist way
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C2pt(t) '
X

n

Z2
n

2En
e�Ent

n = 0 and 1 
the rest died by t=3

how do we get uncertainty?



Frequentist error estimation
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Bootstrap resampling 

original data

1 2 3 4 5 6 7 … (config.)

t

boot0
fit this data 
get results for 
fit parameters 
(masses, etc)

bootstrap resample 1

draw with replacement
4 7 7 8 2 1 9 1 2 …

fit data get result

bootstrap resample 2

5 7 8 8 2 1 9 8 3 …

fit data get result

… repeat



Bootstrap histograms
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Result of the bootstrap resampling on a fit parameter 

*this is not the proton mass but the 
nucleon axial charge. NERSC was 
down so I could not make new plots 
for the proton mass.

bootstrap propagates 
correlations 
correlated ratio 
plotted here

resampled 4000 times



Reconstruct fit with bootstrap
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n = 0 and 1 
the rest died by t=3

can we fit further to the left?



Bayesian constraint curve fit
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sum of exponentials is ill-conditioned 
motivate constraint via Bayes theorem 

mean distribution of fit parameters are normal also 

• we have approximate conjugate priors 
• normalization factor is trivial 

we do not need MC to obtain the posterior distribution

P (A|B) =
P (B|A)P (A)

P (B)

P (Z,E) / e��2

prior

/2

P (Z,E|Ct) / e�(�2

data

+�2

prior

)/2



Prior constraints
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Ground state energy Ground state overlap

Excited state energy ~ Roper resonance 
Excited state overlap ~ same order of magnitude



Stability plot
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Ok… for this dataset t=3 is the best we can do…

n = 2 to 6



Structure calculations
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Understand how hadrons interact with other particles
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HPQCD [arXiv:1406.2279] 



Nucleon axial charge
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Benchmark calculation of lattice QCD for nuclear physics 

Simplest structure calculation for baryons 
Lattice calculations systematically low (problem!)

Isovector charges gA = �u ≠ �d
—-decay, gA/gV = 1.2723(23) PDG 2015.

Benchmark quantity sensitive to systematics.
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Three-point correlation functions

24

Insert axial-vector current between nucleons

same propagator

N N

J

propagator sequential propagator 
(propagator + extra inversion)

sequential propagators invert off hadronic sink 
source-sink separation has to be fixed as a result 

can insert any current once propagators are created 



PNDME nucleon axial current
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At fixed tsep excited state contamination is sum of constants
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FIG. 8. The 2-state fit to the unrenormalized axial charge gu�d
A data for the seven ensembles at di↵erent values of the lattice

spacing and pion mass. The grey error band and the solid line within it is the tsep ! 1 estimate obtained using the 2-state
fit. The result of the fit for each individual tsep is shown by a solid line with the same color as the data points. Note that the
data with tsep = 16 in the two a06 ensembles are not used in the fit.

up to n excited states are included in the fit Ansatz). Our
additional tests on the a06 ensembles discussed in Sec. VI
show that increasing the smearing size � over the range
simulated reduces A1/A0 and the excited-state contami-
nation, most notably in the axial and scalar charges. On
the other hand, beyond a certain size �, the statistical
errors based on a given number of gauge configurations
start to increase. Also, when calculating the form fac-
tors, one expects the optimal � to decrease with increas-
ing momentum. Thus, one has to compromise between
obtaining a good statistical signal and reducing excited-
state contamination in both the charges and the form
factors, when all these quantities are being calculated
with a single choice of the smearing parameters.

The data in Tables III and IV show an increase in the
ratio A1/A0 as the lattice spacing is decreased. This
suggests that the smearing parameter � (see Table II)

should have been scaled with the lattice spacing a. The
dependence of the ratio on the two choices of tmin used
in the fits (estimates in Table III versus Table IV) and
between the HP and AMA estimates for each choice is
much smaller. Based on these trends and additional tests
discussed in Sec. VI, a better choice for the smearing pa-
rameters when calculating the matrix elements at zero-
momentum transfer is estimated to be {5, 70}, {7, 120}
and {9, 200} for the a = 0.12, 0.09 and 0.06 fm ensem-
bles, respectively. In physical units, a rule-of-thumb es-
timate for tuning the smearing size is �a ⇡ 0.55 fm.

To extract the three matrix elements h0|O�|0i,
h1|O�|0i and h1|O�|1i, for each operator O� = OA,S,T,V ,
from the 3-point functions, we make one overall fit using
the data at all values of the operator insertion time ⌧ and
the various source-sink separations tsep using Eq (10).
From such fits we extract the tsep ! 1 estimates un-

excited states 
disappear at large 
tsep where large is 
not large enough 

signal degrades 
exponentially 

better data 
generation? 

better analysis?

[1606.07049]

x-axis is current insertion time



Feynman-Hellmann Theorem
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Matrix elements are related to variations in the spectrum 
with respect to an external source 

where 

The external source is 

of some bilinear current density (e.g. axial-vector current) 

An interesting new way to calculate nucleon structure

@En

@�
= hn|H|ni

S = SQCD + S�

S� = �

Z
d

4
xj(x)

[1612.06963] Awesome paper (I’m an author)



FHT on the lattice
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Reminder: Effective mass 

Take the analytic derivative w.r.t. external source 

where 

First term vanishes unless it is a scalar current 
Second term is sequential propagator through the current

meff (t) = ln
C(t)

C(t+ 1)

@meff

@�

����
�=0

=


@�C�(t+ 1)

C�(t+ 1)
� @�C�(t)

C�(t)

�����
�=0

�@�C�(t)|�=0 =� C(t)

Z
dt0h⌦|J(t0)|⌦i

+

Z
dt0h⌦|T{N(t)J(t0)N†(0)}|⌦i



Feynman-Hellmann propagator
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Current is point-like so sum over time (and space) is valid 
Generate data as a function of source-sink separation

X

t0
N N

J

propagators

Feynman-Hellmann propagator



Spectral decomposition
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     signal           artifacts from summing over all current time 

Go to Heisenberg picture and insert identity… 

luckily all the artifacts can be absorbed into  
still the spectral decomposition is quite daunting

@�C�(t)|�=0 =
X

n

⇥
(t� 1)zngnnz

†
n + dn

⇤
e�Ent

+
X

n 6=m

zngnmz†m
e�Ente�nm/2 � e�Emte�mn/2

e�mn/2 � e�nm/2

dn



Feynman-Hellmann fits
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Just be brave

• complete spectral decomposition 
• exponentially precise data (small t) 
results in fit ansatz explaining data!



ν-N quasi-elastic scattering
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Llwewllyn-Smit formalism

n p

⌫ ` form factors

⇠ F1(Q
2
), F2(Q

2
), FA(Q

2
)

FA(Q
2) = gA

✓
1 +

Q2

M2
A

◆�2

Llwewllyn-Smit [Phys.Rept. 3 (1972) 261-379]

d�

dQ2

✓
⌫n ! `�p
⌫p ! `+n

◆
=
M2

NG2
F |Vud|2

8⇡E2
⌫

⇥

A(Q2)⌥B(Q2)

s� u

M2
N

+
C(Q2)(s� u)2

M4
N

�

~1% uncertainty for gA before isospin & EM effects dominate



Proton charge radius

32

7σ experimental e vs. μ discrepancy 
~2% uncertainty can discriminate 4% exp. difference 

lattice can provide model independent values for radii
Carlson [arXiv:1502.05314v1]

Gordon decomposition of vector current

h0|V4|q3i =u(0)

✓
�4F1(Q

2) +
i

2MN
�43q

3F1(Q
2)

◆
u(q3)

=2ENF1(Q
2)

calculate slope of F1 on the lattice

@GE(Q2)

@Q2

����
Q2=0

= �1

6
hr2i = @F1(Q2)

@Q2

����
Q2=0

� F2(0)

4M2
N



Moment methods
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Relate spatial moments to momentum derivatives

Issues with moment methods: 

Wilcox - Moments on lattice yields wrong ground state. 
                  [0204024v1] 

Existing methods: 

Isgur-Wise slope - position space method               [9410013] 
HVP - time moment current current correlator     [1403.1778v2] 
Rome - expand lattice operators           [1208.5914v2][1407.4059] 
ETMC - position space method                          [1605.07327v1] 

Most existing methods take           derivatives all at  
Our method takes            generalized to all momenta

@/@qj q2 = 0
@/@q2



Kinematic setup
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Work done in collaboration with W&M JLab [1610.02354]

tsrc = 0

tsrc = 0
tsnk =T

pz =0
B A

�

AA
tsnk =t

pz =k

For charge radius                        the nucleon interp. operatorA = B = Na

tj =t0

qz =k



Two-point correlator and moment
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two-point correlator 

two-point moment 

only have even spatial moments

C2pt(t) =
X

~x

hN b

t,~x

N
b

0,~0ie�ikxz

C

0
2pt(t) =

X

~x

�x

z

2k
sin (kx

z

)hN b
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N

b

0,~0i

lim
k

2!0
C

0
2pt(t) =

X

~x

�x

2
z

2
hN b

t,~x

N

b

0,~0i



Three-point correlator and moment
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three-point correlator 

three-point moment 

moments are with respect to current insertion 

given correlators, moments are computationally free

C3pt(t, t
0) =

X

~x,~x

0

hNa

t,~x
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0
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0
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X
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0
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z

2
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t

0
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0
N

b
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Spectral decomposition
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two-point fit function 

two-point moment fit function 

definitions 

             for point source/sink 
two-point constrains all parameters except 

C2pt(t) =
X

m

Zb†
m (k2)Zb

m(k2)

2Em(k2)
e�Em(k2)t

C 0
2pt(t) =

X

m

C2pt
m (t)

✓
2Zb0

m

Zb
m

� 1

2[Em(k2)]2
� t

2Em(k2)

◆

Zb0
m = 0

Zb0
m

Zb
m(k2) ⌘hm, pi = (0, 0, k)|N b|⌦i

Em(k2) =
p

M2
m + k2



More spectral decomposition
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three-point fit function 

three-point moment fit function 

2pt and 3pt constraints all params. except slopes 
2pt moment needed for smeared source/sink 
3pt moment constrains slope of form factor 

C3pt(t, t
0) =

X

n,m

Za†
n (0)�nm(k2)Zb

m(k2)

4MnEm(k2)
e�Mn(t�t0)e�Em(k2)t0

C 0
3pt(t, t

0) =
X

n,m

C3pt
nm(t, t0)

⇢
�0
nm

�nm
+

Zb0
m

Zb
m

� 1

2E2
m

� t0

2Em

�



Slope of nucleon vector form factor
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preliminary

@

@n2
Fu
1 (n

2)

����
n2=0

=� 0.343(4)

Fu
1 (0) =2.496(4)



Summary and Outlook
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Lattice QCD is the only first principles method for studying 
spectroscopy and structure of hadrons 

Hadronic matrix elements are essential for interpreting 
experimental results 

Improved lattice calculation involves finding ever smarter 
ways to generate data (on top of hardware development) 

Sophisticated analysis techniques are needed to extract the 
most out of very expensive data 

Analysis and computing skills are very sexy in the Bay Area


