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4D tracking

* At HL-LHC and future colliders, collision vertices densely distributed in space
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Non-parametric functional regression for track reconstruction

» Uses clustered hits in 3D space with additional cluster features
* Apply LDA to reduce dimensionality by one
« Use SVM to cluster hits into tracks
» Use support vector regression to get kinematics from parametric curves
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Fast pattern recognition for track triggers

 ATLAS and CMS exploring low-latency hardware

and algorithms

* ~4 ys latencies!

PGA + Hough Transform

PGA + Associative Memory

PGA + Tracklet approach

AM pattern bank matching
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Combination of data analysis techniques
for efficient track reconstruction
in high multiplicity events

* Cool ideas for high reconstruction efficiency, even for low PT
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* Hough transform + template fit, then search a bipartite graph of
candidates
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More interesting applications

* Belle Il tracking o\
* Cellular automaton connects candidates \Q\ _
* Hopfield network resolves overlaps |

A multi-purpose particle detector for space missions
» Bayesian particle filter or MCMC likelihood for precision
« Exploring HT and NNs for fast online analysis
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More interesting applications

e Cellular automaton for CMS track seeding
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Deep learning applications

* Flavor tagging with DNNs in Belle |l )
* 140 tracking features => 9 layer MLP
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Deep learning applications

* LSTMs for b-tagging in ATLAS

 easily beats other “baseline” taggers
* but doesn’t replace high-level tagger

Reconstructed
4 jet axis
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ML for neutrino experiments (e.g. DUNE, NOvVA)

* Deep nets for classification
* Not new, but now used by DUNE
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Tracking Machine Learning Challenge

* Born out of CTD2015 at LBL, still in development
 ACTS dataset

* Generic detector with non-uniform magnetic field, |
semi-realistic material and detector resolution effects |

- Realistic events (tt + ~200 pileup), ~0.5MB/event
« => 500GB for 1M events...

* Challengers must cluster the hits together into tracks

* Figure of merit built from efficiency, fake rate

» weighted towards high track efficiency for high-
momentum tracks

 Evaluation time will be measured (somehow)
* probably focused on more in a later challenge
 Still debating platform
 though proposal submitted for NIPS competition

http://indico.cern.ch/event/577003/other-view?view=standard#50-status-of-track-machine-lea 13



http://indico.cern.ch/event/577003/other-view?view=standard#50-status-of-track-machine-lea

TrackMLRamp 2D snmulatlon

ertten in python (numpy, pandas)
2D simulation, detectors are perfectly circular =00
Unit mm and MeV

Use typical HL-LHC detector layout : 5 layers pitch
25um, radii {39,85,155,213,271} , +4 layers pitch
50um radiii {405,562,762,1000} (simulate double
layer strip 75um) -500 |

Digital read out : a hit is a "pixel” crossed by a
track

~1000 } -
Constant magnetic field 2T 21500 -1000  -500 0 00 1000 1500

Multiple scattering 2% radiation length each

layer: 0,=13.6 MeV V(0.02)/P (MeV) 1000
Hit inefficiency 3%

Particle stopping probability 1% per layer

Particle gun :

uniform phi distribution baseline
Poisson ~10 tracks per event 0
Momentum : flat 300 MeV to 10 GeV

Origin vertex spread : o,=c, =2/3. mm
Each track has a different vertex 500 k

500

David Rousseau, Tracking challenge siaty




LSTM model for building a track

Model prediction

* Try to build a single, seeded track from a set of
hits with backgrounds

» Detector plane pixel arrays fed into the model
one at a time

* The model spits out an array of “scores” for
that detector plane

* Pixel predictions (or hit “classification”)

 The LSTM memory is used to carry the
dynamic state estimate, updated at each
iteration

* The model may consider multiple candidate
paths, but hopefully converges on correct one




Model prediction

LSTM
applied
to RAMP
challenge

Rebin phi to 200
bins in each layer
Use first layer hits
as seeds

Loop over seeds,
use LSTM to score
hits

Pixel bin
Pixel bin

4
Layer

Model prediction

Pixel bin
Pixel bin

For each hit, take
best track
assignhment as
label

4
Layer

92.1% efficient Model prediction

Pixel bin
Pixel bin
Pixel bin




A later immprovement

» Take fixed number of pixels per-layer as a window around the track seed

Input

S00

400

300

el bin

200

100

* Use a little higher granularity

* 50 pixels per phi bin

* 94.9% efficient
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Model prediction

Pixel bin

4
Layer

Model prediction

Pixel bin
Pixel bin




Other HEP.TrkX stuff,
some shown at CTD

19



Convolutional networks as track finders

Input track image Stub features Segment features
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Stub filters

m W hg Convolutions and pooling —»

e Convolutional filters can be thought of as track pattern matchers

« Early layers look for track stubs

 Later layers connect stubs together to build tracks

Higher level
features
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* Learned representations are in reality optimized for the data => may be abstract
and more compact than brute force pattern bank

 The learned features can be used in a variety of ways

» Extract out track parameters

* Project back to detector image and classify hits
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Testing models on 3D toy data

Deeper LSTM model

» Adds fully-connected layers before/after
the LSTM

Bi-directional LSTM

* Adds a second LSTM running over
sequence In reverse

 Concatenate the two outputs | v | R, 448
Next-layer LSTM ? dedctoriafer 6 7 g

* Predict where the hit will be on the next detector plane, rather than
the current detector plane

« Basically just an extrapolator, but might be interesting to compare

3D convolutional model

* 10 layers, no downsampling

3D conv autoencoder model
» Uses max-pooling to downsample
* Decodes with single fully connected layer

21



LSTM prediction

Projected input 3 avg bkg tracks, 1% noise
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detector layer detector layer

« Sometimes gives predictions that are not smooth

» Occasionally fooled by adjacent hits, though it tends to correct itself
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Bidirectional LSTM prediction

Projected input

3 avg bkg tracks, 1% noise
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* Very precise predictions

* can see into the future, which presumably helps
« still has few rare artifacts
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Next-layer LSTM prediction

Projected input 3 avg bkg tracks, 1% noise

pixel y

—
o

detector layer detector layer

* Next-layer model gives predictions that are less precise but smoother and more accurate

* Mostly unaffected by nearby stray hits
 With this detector occupancy, they are the best at classifying hits
 but this may change with higher occupancy
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ConvNN prediction

Projected input 3 avg bkg tracks, 1% noise
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« Simple conv net is clean and precise in this case
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Architecture comparisons

P Pixel prediction accuracy

Uses best pixel
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* Models’ performance tanks with
iIncreasing track multiplicity

« ConvNN scales the best

* Interesting tradeoffs between the
architectures
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Towards multi-track tracking

» Attempt to extend model for multiple input seeds and multiple output tracks
Multi-channel data Specify seeds in model input

* Every pixel classified by LSTM as belonging to one of the track channels or
the unassigned channel

 Doesn’t train well, but kinda works

27



Towards multi-track tracking

Calculate probability scores per-track, per-layer, as was done before

Input

Model prediction Model prediction

0 10 20 30 40
Layer Layer Layer

* Allow the LSTM to process the data multiple times, combining previous
iteration’s output with original input to refine the prediction

Input

Model prediction Model prediction

nt 40

Pixel

Pixel
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Track image captioning => hits to track params

* CNN extracts feature representation of detector image

« LSTM spits out the track parameters one at a time

Input Model prediction

* |t actually works!
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Estimating uncertainties on parameters

 |n addition to the track parameters, we would need the covariance
 How do we extend the model to spit out reasonable uncertainties?

* Add additional output to model for the covariance matrix:

Dense LSTMH|OD€S and Interceptq
Dense || LSTM l—>| Cov. Matrix Parametersl

-}[Conv. Layers

* Replace mean-squared-error loss function with a log gaussian likelihood:

L(z,y) = log ||+ (y — f(x) =" (y — f(x))

Minimize this during training
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Visualizing predictions with uncertainty

Input

Model prediction

* Drawn by sampling many
times from the nominal
predictions and
uncertainties

Pixel

Layer Layer
Input Model prediction

Pixel
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Other ideas - data transforms

* Hough Transform breaks down in LHC-like data due to process noise
and high occupancy

H
H
PP ...
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/ i

I

parameter space

» But what if a deep network could /earn a mapping to group together
hits that belong to the same track?

* You don’t need to impose a specific representation
* The model could take event context into account
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Other ideas - graph convolutions

» Graph convolutions operate on graph-structured data, taking into account
distance metrics

* https://tkipf.qgithub.io/graph-convolutional-networks/

Hidden layer Hidden layer
h of hits
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» Connections between ~plausible hits on detector layers can form the graph
* Handles sparsity naturally
 Scales naturally with occupancy
« Handles irregular geometry layout (easily?)

| haven't dedicated much thought to this yet, but it may be versatile enough to
do the kinds of things I've already demonstrated



https://tkipf.github.io/graph-convolutional-networks/

What's next for HEP. TrkX?

* We need to start focusing on 1-2 things that look promising, study them in
depth, and compare to reasonable baselines

* Possibilities:

* discrete detector track finding methods with realistic data, compare to
existing KF

 continuous hit space track finding (graphs?)

* seeding => a slightly simpler problem..? Potential for high impact!
* Targets:

- DS@HEP, FNAL, May 8-12

* ACAT, Aug 21-25

* ML conferences
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Backup
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Hough Transform
Algorithm

1. Calculate ¢sg (¢ at r55) for each /p,. YA track . 58 4
. Fill the stub into appropriate cells in a 32x64 array \ -\\
iNn9p. X sg 6 T
. Ignore /,.. values inconsistent with a stub’s bend 5 P 74 -
information (rough p; estimate). 4 / ,ralck X/p‘
. Define cells with stubs in at least 4 or 5 layers as 5 : >
track candidates. ! 6
I. 4 layer threshold used to cope with barrel- -
endcap transition region or dead layers x

Algorithm'’s simplicity — good for FPGAs
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Artificial Retina

The artificial retina function is defined as:

p2(6,z;
R(9)=Ze_ (092 )

where p(0, x;)is distance between the i-th hit and a track with parameters 6 .

For 2D tracks: p(9,.’12,;) =1Y; — (ka:,, + b) 0 = [k, b]
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RANSAC

Searching for one track:

1. The RANSAC selects a random subset of the hits.

2. The linear model is fitted using this subset.

3. The error of the data with respect to the fitted model is calculated.
4. The number of inlier candidates is calculated.

5. Steps 1-4 are repeated until the maximum number of iterations.

6. A model with maximum number of inliers is returned.
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O High level b-tagging algorithm (MV2c¢10) @
ATLAS combines baseline taggers utilizing
iInformation of different aspects of b-hadron
decay

IP3D

likelihood-ratio based on the signed transverse
and longitudinal impact parameters of tracks
associated to jets

SV1

Fit secondary vertices with full track covariance
matrix; Utilize secondary vertex information, e.g.
vertex mass, ratio of vertex energy, number of
two track vertices, etc. for tagging

JetFitter

A Kalman filter which finds common flight path of
b and ¢ hadrons

Reconstructed
~~/ Jjetaxis
A “~
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JetFitter arXiv 1512.01094
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