| CD and LArlIAT Datasets
And
CaloDNN and LArTPCDNN

Amir Farbin
(ATLAS/UTA)

LCD Calo Dataset made by M. Pierini (CMS/CERN) + JR Vlimant (CMS/Caltech)
LAr|IAT Dataset made by S. Shahsavarani (Neutrinos/UTA) + AF

INtro

Reconstruction level DL requires realistic detector simulation... not as easy as 4-vectors or
parameterized detectors.

Experiments are understandably strict about their data. Prohibits:
* Cross experiment or HEP/ML collaboration
* Rapid publication of DL R&D (no physics).
Imaging detectors (Granular Calorimeters, TPCs, Cherenkoy, ...) ideally suited for Deep Learning.
We generated the LCD and LArIAT Datasets to avoid these issues.
e Dataset and code very similar, so I'll talk about both.
* Weekly LCD meetings to organize work. Should do for LArIAT.
Data Science @ LHC (Nov 2015 @ CERN) -> DS@HEP.

» Experts workshop (July 2015): these datasets were introduced in prim. Goal was to make them
public for NIPS... btut we didn’t get a workshop and got busy.

» (Goal is to reveal datasets at next workshop. May 8-12 @ FNAL. https://indico.fnal.gov
conferenceDisplay.py?confld=13497

https://indico.fnal.gov/conferenceDisplay.py?confId=13497
https://indico.fnal.gov/conferenceDisplay.py?confId=13497

Message

e Everyone is busy, so help is appreciated:
« Contribute to finalizing data and Nature Scientific Data paper.
» Collaborate on research.

« We ask that Dataset paper would be the first, and all work done before DS@HEP WS be
collaborative.

* These are large datasets (LCD = 20 GB so far, LArIAT = 20 TB)
» Distribution and processing require extra thought
» Code to efficiently read the data should be provided.
» Not clear if we should distribute full running examples... or even collaborative code used for papers.
* |'ll present my packages... open to input and suggestions.
* | feel like I'm often working in a corner may make mistakes.
e | have lots of questions | have no one to ask.

* | hope this forum could be a place to share experiences and give advice...

| CD Calorimeter

* CLIC is a proposed CERN project for a linear accelerator of electrons and positrons to TeV
energies (~ LHC for protons)

* Not a real experiment yet, so we) can simulate data and make it public.
e Simpler geometry than ATLAS...

» The LCD calorimeter is an array of absorber material and silicon sensors comprising the
most granular calorimeter design available

» Data is essentially a 3D image

* So far several million PiO, Elec, ChPi, Gamma. 10 to 510 GeV. Low energy and Jet
samples planned.

* ECAL (25x25x25) | HCAL (5x5x60) “window”. Aux info: Energy, ...
0

* First studies, m vs y classification with various DNNs by summer students.

» Code/results not collected... but should be easy to redo. ROC Curve
100}

* New version of dataset.

* Some visualization code exists... Full running example in CaloDNN.

= bcnnl0

* Many interesting problems: PID Classification, Energy Regression, Shower generative s bcnn100
mode|8. == bcnnl000

090 || mmm bcnnl0000
B big_conv
. conv10
conv100
conv1000
conv10000
conv2D
conv2D10
conv2D100
conv2D1000
conv2D10000
densel0
densel00
densel000
densel0000
scnnl0
scnnl100
scnn1000
scnnl10000

' Electromagnetic
i, shower (e, vy)

085

Tue Negative Rate

0.80 |-

075}

ARNRRNR

L L L :
0.70 0.75 0.80 085 090 095 100

Join the fun....

Imaging calorimeter data for Machine Learning
applications in HEP

Josh Bendavid® Kaustuv Datta®® Amir Farbin® Nikolaus Howe®¢ Jayesh Mahapatra?
Maurizio Pierini’ Maria Spiropulu® Jean-Roch Vlimant®

*California Institute of Technology

®Reed College] . i
 University of Tewas at Arlington Photon identifiction and energy measurement with

d . .
CERN a highly granular calorimeter through Deep
¢ Williams College .

Learning

Josh Bendavid® Kaustuv Datta®® Amir Farbin® Nikolaus Howe?¢ Jayesh Mahapatra®
Maurizio Pierini¢ Maria Spiropulu® Jean-Roch Vlimant®

*California Institute of Technology
b Reed College

¢ University of Texas at Arlington
1CERN

¢ Williams College

LArIAT DatIa

o LArIAT is a small LArTPC detector: 2 wire places with 240 wires each, 4096
samples.

* 1 M each of: antielectron, kaonPlus, nue_CC, nutaubar_CC pionMinus,
antimuon, nue_NC, nutaubar_NC, pionPlus, antiproton, muon,
numubar_CC, nutau_CC, electron, numubar_NC nutau_NC, proton,
nuebar_CC, numu_CC, photon, kaonMinus, nuebar_NC, numu_NC, pion_0

« Data: Sim done.

 Raw ADC readout: 2 x 4096 x 240 (essentially no noise)

« Geant4 charge deposits. Sparselensor allows creating 3D images of
any resolution. (Needs reprocessing of data-prep steps)

» Aux info: type of interaction, energy, ...
o Studies:
» Preliminary studies very promising.

o Subsequent work (P. Sadowski + ?) showed impressive classification
performance using siamese inception model trained for 1 week.

» A bit of work on energy regression... not as straightforward.
* Progress stalled...

 Interesting problems: PID classification, Energy Regression, Compression/
Noise suppression, 2x 2D -> 3D (DNN tomography)

Technical Challenges

Data comes as many hb5 files, each containing O(1000) events, organized into directories by particle type.
Needs to be read, mixed, “labeled”, and normalized.... can be time consuming.

Doesn't fit in memory...

Very difficult to keep the GPU fed with data. GPU utilization often < 10%, rarely > 50%.

Keras python generator mechanism:

» Allows reading on the fly and parallel read

Found 2 problems: (Am | crazy?)

« Multiprocessing requires the generators to be thread_safe, which means putting in a locking mechanism which only allows
one process to read the data at a time. So > 2 processes not useful.

» Easy to mess up and have parallel generator instances deliver overlapping data.

LCD data is ~ x10 slower with naive Keras generator vs preloading in memory.

* | wrote a standalone parallel generator: DLKit/ThreadedGenerator:

Python Global Interpreter Lock (GIL) allows only one thread to run at a time... so must use multiprocessing.

Current implementation: Filler process sends requests (file/block) via multiprocessing queues to workers processes that deliver
data to corresponding threads via pipes that feed the generator via thread queues.

Bottle neck is the process to thread pipe... data needs to be serialized. Working on share memory solution...
Data can be premixed. Premix: ~2x slower than data in memory. Mix as you go: ~4x slower than data in memory.

System resources become problem when running many trainings in same system. Working on framework upgrade to
simultaneously train several models with same data.

DLKIt ...

_ P masterv ¥, ~ DLKit / DLTools /
Thin layer on top of Keras. -

My personal DNN framework. | imagine many of you would write L -
something similar... [CallBacks.py
_ _ o (5] GPUQueuesNJobs.sh
Handles book keeping for comparing large number of training
sessions (e.g. for hyper parameter scan or optimization)) LoadModel.py
(5] ModelWrapper.py
Tools necessary to setup HEP problems. g Permutatorpy
(2} Printh5File.py

| have several HEP problems setup using this package:

(5] README.md

« EventClassificationDNN, MEDNN, CaloDNN, LArTPCDNN, ... _
(5] ScanAnalysis.py

Hyperas or Spearmint integration demonstrated, but needs work. [SparseTensorDataSet.py

() TarResults.sh

Keras / MPI Integration also in the works.
(5] ThreadedGenerator.py

Already ran on BlueWaters and Titan. & _init__py

. ' . (5] clean.sh
https://bitbucket.org/anomalousai/dlkit/src

https://bitbucket.org/anomalousai/dlkit/src

CaloDNN/LArTPCDNN

Instantiates generators for efficiently reading or premixing
data.

Provides out-of-the-box running realistic (not toy) models.
Orchestrates running large HP scans.

* Makes tables...

* Jupyter notebook analysis in works.

Generates standard plots.

https://github.com/UTA-HEP-Computing/CaloDNN

Polishing up package for public...
Gearing up for a big BlueWaters run...
* Large HP Scan (not optimization)

* “Regularization”: training time.

) Analysis.py

E) ClassificationArguments.py
£) ClassificationExperiment.py
E) ClassificationScanConfig.py
E) LCDData.py

£) Models.py

E) README.md

£) ScanJob.py

&) ScanJob.sh

£) SubmitMerge.sh

=) _init__.py

) requirements.txt

https://github.com/UTA-HEP-Computing/CaloDNN

afarbin — ssh -YX orodruin.uta.edu — 111x29

Last login: Tue Feb 28 08:47:35 2017 from 192.168.1.13
afarbin@thecount:~$ cd LCD/DLKit/
afarbin@thecount:~/LCD/DLKit$ source setup.sh
(Keras) afarbin@thecount:~/LCD/DLKit$ python -m CaloDNN.ClassificationExperiment --help
usage: ClassificationExperiment.py [-h] [-C CONFIG] [-L LOADMODEL]
[--gpu GPUID] [--cpu] [--NoTrain]
[--NoAnalysis] [--Test] [-s HYPERPARAMSET]
[--nopremix] [--preload] [-r RUNNINGTIME]

optional arguments:
-h, --help show this help message and exit
-C CONFIG, --config CONFIG
Use specified configuration file.
-L LOADMODEL, --LoadModel LOADMODEL
Loads a model from specified directory.

--gpu GPUID Use specified GPU.

--Cpu Use CPU.

--NoTrain Do not run training.

--NoAnalysis Do not run analysis.

--Test Run in test mode (reduced examples and epochs).

-s HYPERPARAMSET, --hyperparamset HYPERPARAMSET
Use specificed (by index) hyperparameter set.

--nopremix Do not use the premixed inputfile. Mix on the fly.
--preload Preload the data into memory. Caution: requires lots
of memory.

-r RUNNINGTIME, --runningtime RUNNINGTIME
End training after specified number of seconds.
(Keras) afarbin@thecount:~/LCD/DLKit$ I

n
Input for Premixed Generator
InputFile="/data/afarbin/LCD/LCD-Merged-All.h5" C a n O n I g . p y
Input for Mixing Generator

FileSearch="/data/afarbin/LCD/*/*.h5"

Generation Model

Config={
"GenerationModel":"'Load'",
"MaxEvents":int(3.e6),
"NTestSamples':100000,
"NClasses":4,

"Epochs":1000,
"BatchSize'":1024,

Configures the parallel data generator that read the input.
These have been optimized by hand. Your system may have

more optimal configuration.

"n_threads":4, # Number of workers

"multiplier":2, # Read N batches worth of data in each worker

How weights are initialized
"WeightInitialization":"'normal'",

Normalization determined by hand.
"ECAL":True,
"ECALNorm":150.,

Normalization needs to be determined by hand.
"HCAL":True,
"HCALNorm":150.,

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Set the ECAL/HCAL Width/Depth for the Dense model.

Note that ECAL/HCAL Width/Depth are changed to "Width" and "Depth",
if these parameters are set.

"HCALWidth":32,

"HCALDepth":2,

"ECALWidth":32,

"ECALDepth":2,

No specific reason to pick these. Needs study.
Note that the optimizer name should be the class name (https://keras.io/optimizers/)
"loss":"'categorical_crossentropy'",

Specify the optimizer class name as True (see: https://keras.io/optimizers/)
and parameters (using constructor keywords as parameter name).

Note if parameter is not specified, default values are used.
"optimizer":"'SGD'",

#'1r":0.01,

#"decay":0.001,

Parameter monitored by Callbacks
"monitor":"'val_loss'",

Active Callbacks
Specify the CallBack class name as True (see: https://keras.io/callbacks/)
and parameters (using constructor keywords as parameter name,
with classname added).

"ModelCheckpoint":True,

"Model_Chekpoint_save_best_only":False,

72

Configure Running time callback 75 “Depth":range(1,5),

Set RunningTime to a value to stop training after N seconds. 76 “1r":[0.1,0.01,0.001],

"RunningTime": 3600, 77 "decay":[0.1,0.01,0.001],
78 }

79

73 # Parameters to scan and their scan points.
74 Params={ "Width":[32,64,128,256,512],

