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Figure 8: Energy deposit of neutral pions and their decay products in the calorimeter with different cluster shapes
with fine granularity (upper row) and how they would look with the approximate resolution of the EMCal (lower row).
The red dashed lines indicate the approximate splitting done by the v2-clusterizer, while the v1 clusterizer would see
them as one single cluster with different number of local maxima.

» Electromagnetic calorimeters (ECAL/EMCAL) operate really like
imaging devices
» The problem here is to discern objects that are at pixel/subpixel level
F. Bock, ALICE-AN-3067 (unfortunately internal)



Introduction
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H. Hesari et al., Phys. Rev. D91 (2015), 057502,
https://doi.org/10.1103/PhysRevD.91.057502

» One of the most important measurement with EMCAL is the
prompt/direct photon

» To leading order the kinematic tag for to the quark/gluon production


https://doi.org/10.1103/PhysRevD.91.057502

Introduction
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F. Arleo etal., https://arxiv.org/abs/hep-ph/0311131
» But there is always a large background from 1% — yy
» Signal/background for 10-20 GeV/c is = 0.05-0.1


https://arxiv.org/abs/hep-ph/0311131

Goal
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and any significant deviation of the double ratio above
unity indicates a direct photon excess. In Fig. 1 an excess

> Yinclusive = Yprompt + Ydecay
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Previous Work
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where 844, 8yn and 84, are weighted coeficients by the cell energy:
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where wg = 4.5 [9] °, i indicates a cell that belongs to the cluster and 1; and ¢, are the indexes of the cell
inside a EMCal super-module in longitudinal and azimuthal direction, respectively, with 0 < 1, < 48 and

0< ¢ <24

» The traditional discriminant the ALICE experiment is using
» Basically an ellipse fit, where the major axis is the discriminant

H.-t. Zhang, ALICE-AN-2326 (unfortunately internal)



Ingredients

» ALICE LHC15a3b (EM-enriched QCD MC, generator-level vs. GEANT),
4 D | min bins, 80054 training and 80054 test clusters

» Keras 1.1.2, TensorFlow 0.11.0
» 8-16 GeV clusters

» Extract5 X 5cells ¢; = E/Ester j = 1,.. ., 25 around each
cluster’s maximum cell, add cluster’s n
> (¢1,...,C25, 1)

» Rectified Linear Unit (ReLU) activation (not possible with TMVA)

> 26 parameters — 512 neurons — 512 neurons — 512 neurons —
512 neurons — (softmax to) 2 neurons (not possible with TMVA)

» Tap 1 of the 2 output neurons as prompt y discriminant
» Dropout at probability 0.1 for regularization (not possible with TMVA)

» 128 batches, 12 epochs, = 5 minutes training on a GPU (not possible
with TMVA)



Data in t-SNE
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You get a region with well isolated photon, radiating to a diffuse

region, then 20 regions of clearly detectable two photons
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20 regions =5 X 5 minus the middle cross (5)
Problem is clearly not rotationally symmetric

Some of the ongoing work is to trace the “contamination” by
problems in the detector simulation (alignment)



How it looks in Keras

model = Sequential()
ndense = 512
dropout = 0.1

model.add(Dense(ndense, input_shape=(nfeature,)))
model.add(Activation(’relu’))
model .add(Dropout (dropout))
for i in range(4):
model.add(Dense(ndense))
model.add(Activation(’relu’))
model.add(Dropout(dropout))
model.add(Dense(2))
model.add(Activation(’softmax’))

model.compile(loss="categorical crossentropy’,
optimizer=’adadelta’,
metrics=[’accuracy’])



DNN activation
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» A much higher discrimination power for photons, where
signal/background gain =~ 20-30

» Has also a high purity n° region




Scatter plot DNN vs. A}
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» DNN recovers y at A3 =~ 0.4 and out to 1.5

» There is also a 2nd, low purity region the DNN detects, around
A3 =~ 1.5-2 (possibly clusters not properly split)

» DNN rejects a “stripe” of y at A2 = 0.2 and poor SNR



Scatter plot among two generations of DNNs
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» Change s to center/scale the individual values by mean and o to-1...1
» Mostly a non-linear function



ROC curve comparison
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» Error bars are 68% Jeffreys B(1, 1) (“Bayesian”) confidence interval
» DNN consistently outperforms A2 by ~ 30-40%



Ongoing Work
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» Detector simulation checks
» Embedding into data background
» Scaling study on Cori phase /Il



