Hunting **Axions** with Nuclear Spin Precession

Matt Kramer

Physics 290E Sept. 14, 2016

What's an axion?

- Short answer: A light, weaklyinteracting, neutral, pseudoscalar boson, added to the SM as a solution to the *strong CP problem*.
 - Dark matter candidate!
 - 100% effective on grease
- Long answer: Let's talk about strong CP...

You will get tired of these jokes if you see a lot of axion talks

The strong CP problem

The "naïve" QCD Lagrangian looks like

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{2}G^{a}_{\mu\nu}G^{\mu\nu a}$$

- Conserves CP, in agreement with observations
- Problem: QCD's nontrivial vacuum structure is predicted to introduce large CP-violating effects ...which have never been seen!

The QCD vacuum

 QCD vacuum is degenerate; for any "angle" θ, there is a perfectly good vacuum state:

$$\left|\theta\right\rangle = \sum_{n} e^{-in\theta} \left|n\right\rangle$$

- The |n> are topologically nontrivial gauge configurations
 - Imagine pure gluon fields "winding" around space once, twice, etc...
 - Discovered by 't Hooft in the context of instantons
 - Totally invisible in perturbation theory

QCD vacuum, cont'd

• When these "instantons" are included in the path integral, the result is equivalent to adding a term to the "effective" Lagrangian,

$$\Delta \mathcal{L} = \theta \frac{g^2}{32\pi^2} G^a_{\mu\nu} \widetilde{G}^{\mu\nu a} \qquad \text{where} \qquad \widetilde{G}^{\mu\nu a} \equiv \epsilon^{\mu\nu\rho\sigma} G^a_{\rho\sigma}$$

- This violates CP, like an E-B term for EM!
- But that's not all, folks! Let's go back to the fermion mass term...

The fermion mass matrix

- Our "naïve" Lagrangian assumed that the fermion fields had been rotated to give a *real* mass matrix
- In general, the mass matrix may be complex, including a chiral phase θ ':

$$m\bar{\psi}\psi o m\bar{\psi}e^{i\theta'\gamma_5}\psi$$

• We can perform a chiral rotation to get rid of θ'

... but due to triangle diagrams (see: axial anomaly), this introduces a term

$$\Delta \mathcal{L} = \theta' \frac{g^2}{32\pi^2} G^a_{\mu\nu} \widetilde{G}^{\mu\nu a} \qquad \text{Look familiar?}$$

Summing up strong CP

- In the end, we have two *independent* sources of strong CP violation:
 - Vacuum angle θ (from QCD)
 - Mass matrix chiral phase θ ' (from Higgs mech.)
- Their sum gives effective CPV parameter $\overline{\theta}$
- We expect a $\overline{\theta}$ of order 1; anything else would be "unnatural"
- What do we actually observe ...?

$\overline{\theta}$ is really tiny!

- $\overline{\theta}$ term induces an electric dipole moment in the neutron
- RAL-Sussex-ILL experiment: $d_n < 3.0 \ge 10^{-26} e \text{ cm}$ (90% CL)
- This implies:

• Why is $\overline{\theta}$ so small? This is the strong CP problem!

Note: If at least one quark were massless, $\overline{\theta}$ would be unobservable, but this case has long been ruled out!

Peccei-Quinn to the rescue!

- The favored solution (by far)
- Roughly speaking, promote $\overline{\theta}$ to a dynamical field...

...whose potential leads to a VEV of zero. No CPV!

• Let's jog through the details...

Acts oppositely on right- and left- handed fields

The magic of $U(1)_{PO}$

PQ says: Add chiral global symmetry U(1)_{PQ}

Depending on model, assign $U(1)_{PQ}$ charges to some scalars (typically two Higgs doublets), plus some/all SM/BSM fermions

- Let $U(1)_{PQ}$ be spont. broken at a high scale f_a Get a massless Nambu-Goldstone boson a: Axion!
- Due to QCD triangle diagrams, we get a familiar-looking term:

$$\Delta \mathcal{L} = -\frac{a}{f_a} \frac{g^2}{32\pi^2} G^a_{\mu\nu} \widetilde{G}^{\mu\nu a}$$

$U(1)_{PQ}$ cont'd

- U(1)_{PQ} will be explicitly broken by QCD instantons
 - "Tilts" axion potential, giving axion a mass ~ $(f_{\pi}/f_{a}) m_{\pi}$
 - The effective potential happens to be minimized when $a = f_a \overline{\theta}$. CP violation disappears!

Recap

- QCD vacuum structure \rightarrow large CP violation
- Neutron EDM measurements constrain CPV parameter $\overline{\theta}$ to be unnaturally small (< 10⁻¹⁰)
- Peccei-Quinn: Add global U(1)_{PQ} symmetry, break it at high energies, get Goldstone boson = axion
- Axion-gluon coupling (from triangle diagrams) violates CP just like $\overline{\theta}$
- QCD instantons give axion a mass and a potential which is minimized when $\overline{\theta}$ is canceled
- Voila! Now, what about the axion's properties?

Axion mass bounds

- Above 10 meV excluded by SN1987A
- Below 10 μ eV ($f_a > 10^{12}$ GeV) in tension with some cosmological models (too much DM)

But if we relax the models' assumptions, we're driven to consider f_a up to Planck scale (10¹⁹ GeV, $m_a \sim \text{peV}$)

Generally, the lighter the axion, the larger its share of the dark matter pie.

Vijay will hopefully go into more detail! ③

Axion couplings

• Three interaction terms in Lagrangian:

• Traditional experiments have used the first coupling (axion-photon conversion)

Sensitivity goes like $f_{a^{-2}}$ or worse – lots of trouble pushing below 1 µeV. (Also, cavity expt's too small.)

 We'll be focusing on techniques that use the 2nd and 3rd couplings

Potential to reach much lower in mass!

QCD axions vs. axion-like particles

- QCD axion isn't the only possible light, weakly interacting pseudoscalar
- String theory predicts vacua with various other axion-like particles (ALPs)
- QCD axion has welldefined relationship between mass and coupling; not so for ALPs
- I'll be discussing techniques that can measure ALPs as well as QCD axions

Axions as a classical field

- Again, m_a is expected to be in peV μ eV range Corresponding frequencies: kHz - GHz
- Low frequency, high occupation number...

We can treat the axion as a coherent classical field!

• Instead of looking for extremely rare single-particle scattering/conversion events...

We can look for much larger effects caused by the whole field!

• Using de Broglie wavelength, can calculate coherence time/length:

Result: (1 s, 1000 km) x (MHz / m_a), 300 km.

• Momentum (DM flow!) encoded in spatial gradient of field

New "NMR" detection scheme

- Rajendran *et al.* have proposed a novel type of axion search
- Basic idea:
 - Magnetize a sample of nuclei
 - Oscillating axion field can induce various moments in particles (EDM, axial moment, ...)
 - Induced moments will cause spin precession \rightarrow oscillating magnetization of sample
 - When applied **B** hits resonance (axion mass), get a "big" signal. Read out with sensitive magnetometer (SQUID, SERF, ...)

Nuclear electric dipole moment

• Axion-gluon coupling $\frac{a}{f_a}G\tilde{G}$ can induce nuclear EDM:

$$\mathcal{L} \ni -\frac{i}{2}g_d a \bar{N} \sigma_{\mu\nu} \gamma_5 N F^{\mu\nu}$$

• The resulting dipole moment d_n is given by

$$d_n^{\text{QCD}} \approx 2.4 \times 10^{-16} \frac{a}{f_a} \ e \cdot \text{cm}$$

• Assuming axion composes all of DM, we can calculate *a*, and we finally get

$$d_n^{\text{QCD}} \approx (9 \times 10^{-35} \ e \cdot \text{cm}) \cos{(m_a t)}$$

• The amplitude is independent of $m_a!$

...unlike in axion-photon experiments, which lose much sensitivity for $m_a < \mu eV$

Measuring the EDM

- Apply E_{ext} to material whose lattice structure produces strong internal E*
- Magnetize material with $\mathbf{B}_{\text{ext}} \perp \mathbf{E}^{*}$
- Spins will precess around $\mathbf{B}_{ext} \oslash f_{Larmor} = 2\mu B$

loop

- EDM oscillates @ $f_{EDM} = m_a/h$, interacts with **E***, causing add'l spin precession $SQUID_{pickup}$
- When B = m_a/2µh,
 resonance!

Sensitivity to oscillating EDM

Phase I: Current tech (optimize existing static EDM experiments). Probe ALPs but not QCD axion

Phase II: Combine improvements to existing tech, already shown in isolation but not together. Probe lighter QCD axions!

Red dashes: "Fundamental" limit from magnetization noise. Reachable with technology improvements. Fully covers QCD axion below ADMX range!

Axial nuclear moment

Axion-fermion coupling gives rise to

 $\mathcal{L} \supset g_{\rm aNN}(\partial_{\mu}a)\bar{N}\gamma^{\mu}\gamma_5 N$

- The derivative in a provides sensitivity to DM velocity directional detection!
- In background *a* field (e.g. DM), non-relativistic limit gives

 $H_N \supset g_{aNN} m_a a_0 \cos{(m_a t)} \vec{v}. \vec{\sigma_N}$

• This causes the nuclear spin to precess around the DM velocity vector!

Directional measurement

- Similar to EDM measurement, but no need for electric field
- Magnetize sample in direction orthogonal to $v_{\mbox{\tiny DM}}$
- Again, spins precess around \mathbf{B}_{ext} @ $f_{Larmor} = 2\mu B$
- Time-varying axial moment leads to precession around v at f = m_a/h
- As before, $f = f_{Larmor} \rightarrow resonance!$

Directional measurement sensitivity

Red line: Sensitivity for preliminary experiment using Xe

Blue line: Same for H

Dashed lines: Limit from magnetization noise

We see that the QCD axion is unlikely to be probed with current tech. Masses in 0.1 to 1 μ eV perhaps reachable in future.

Still, much ALP parameter space can be excluded, and any discovery would be **directional**

Conclusion

- Axions are a well-motivated solution to the strong CP problem
- Additional axion-like particles are motivated by string theory
- Axions and ALPs are leading candidates for dark matter, together with WIMPs
- Using modest-to-challenging improvements to current technology, NMR techniques can probe light axions down to the peV level
- The first dark matter discovery may occur above ground!

Thanks!

Now get back to your ROOT code

