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What’s an axion?

● Short answer: A light, weakly-
interacting, neutral, pseudo-
scalar boson, added to the SM 
as a solution to the strong CP 
problem.
– Dark matter candidate!

– 100% effective on grease

● Long answer: Let’s talk about 
strong CP...

You will get tired of these jokes 
if you see a lot of axion talks
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The strong CP problem

● The “naïve” QCD Lagrangian looks like

● Conserves CP, in agreement with observations

● Problem: QCD’s nontrivial vacuum structure is 
predicted to introduce large CP-violating effects

...which have never been seen!
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The QCD vacuum

● QCD vacuum is degenerate; for any “angle” θ, 
there is a perfectly good vacuum state:
 

● The |n> are topologically nontrivial gauge 
configurations
– Imagine pure gluon fields “winding” around space 

once, twice, etc…

– Discovered by ‘t Hooft in the context of instantons

– Totally invisible in perturbation theory
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QCD vacuum, cont’d

● When these “instantons” are included in the 
path integral, the result is equivalent to adding 
a term to the “effective” Lagrangian,
 

                                   where
 

● This violates CP, like an E·B term for EM!
● But that’s not all, folks! Let’s go back to the 

fermion mass term…
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The fermion mass matrix

● Our “naïve” Lagrangian assumed that the fermion 
fields had been rotated to give a real mass matrix

● In general, the mass matrix may be complex, 
including a chiral phase θ’:

● We can perform a chiral rotation to get rid of θ’
… but due to triangle diagrams (see: axial anomaly), 
this introduces a term

Look familiar?
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Summing up strong CP

● In the end, we have two independent sources 
of strong CP violation:
– Vacuum angle θ (from QCD)

– Mass matrix chiral phase θ’ (from Higgs mech.)

● Their sum gives effective CPV parameter θ
● We expect a θ of order 1; anything else would 

be “unnatural”
● What do we actually observe…?

CP CP
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θ is really tiny!

● θ term induces an electric dipole 
moment in the neutron

● RAL-Sussex-ILL experiment:

dn < 3.0 x 10-26 e cm   (90% CL)

● This implies:

 θ < 10-10

● Why is θ so small?
This is the strong CP problem!

Note: If at least one quark were massless, θ would be 
unobservable, but this case has long been ruled out!
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Peccei-Quinn to the rescue!

● The favored solution (by far)

● Roughly speaking, promote θ 
to a dynamical field…

...whose potential leads to a 
VEV of zero. No CPV!

● Let’s jog through the details...
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The magic of U(1)
PQ

● PQ says: Add chiral global symmetry U(1)PQ

Depending on model, assign U(1)PQ charges to 
some scalars (typically two Higgs doublets), plus 
some/all SM/BSM fermions

● Let U(1)PQ be spont. broken at a high scale fa

Get a massless Nambu-Goldstone boson a: Axion!

● Due to QCD triangle diagrams, we get a 
familiar-looking term:

Acts oppositely on 
right- and left-
handed fields



11

U(1)
PQ

 cont’d

● U(1)PQ will be explicitly broken by QCD 
instantons
– “Tilts” axion potential, giving axion a mass ~ (fπ/fa) mπ

– The effective potential happens to be minimized 
when a = faθ. CP violation disappears!
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Recap

● QCD vacuum structure → large CP violation
● Neutron EDM measurements constrain CPV parameter 

θ to be unnaturally small (< 10-10)

● Peccei-Quinn: Add global U(1)PQ symmetry, break it at 
high energies, get Goldstone boson = axion

● Axion-gluon coupling (from triangle diagrams) violates 
CP just like θ

● QCD instantons give axion a mass and a potential 
which is minimized when θ is canceled

● Voila! Now, what about the axion’s properties?
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Axion mass bounds

● Above 10 meV excluded by SN1987A

● Below 10 μeV (fa > 1012 GeV) in tension with some 
cosmological models (too much DM)

But if we relax the models’ assumptions, we’re driven to 
consider fa up to Planck scale (1019 GeV, ma ~ peV)

Generally, the lighter the 
axion, the larger its share of 
the dark matter pie.

Vijay will hopefully go into 
more detail! �
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Axion couplings

● Three interaction terms in Lagrangian:

● Traditional experiments have used the first 
coupling (axion-photon conversion)

Sensitivity goes like fa
-2 or worse – lots of trouble 

pushing below 1 μeV. (Also, cavity expt’s too small.)

● We’ll be focusing on techniques that use the 2nd 
and 3rd couplings

Potential to reach much lower in mass!

Triangle diagrams Spontaneous symmetry breaking
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QCD axions vs. axion-like particles

● QCD axion isn’t the only possible light, weakly interacting pseudoscalar

● String theory predicts 
vacua with various 
other axion-like 
particles (ALPs)

● QCD axion has well-
defined relationship 
between mass and 
coupling; not so for 
ALPs

● I’ll be discussing 
techniques that can 
measure ALPs as well 
as QCD axions
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Axions as a classical field

● Again, ma is expected to be in peV - μeV range

Corresponding frequencies: kHz - GHz

● Low frequency, high occupation number…
We can treat the axion as a coherent classical field!

● Instead of looking for extremely rare single-particle 
scattering/conversion events…

We can look for much larger effects caused by the whole field!

● Using de Broglie wavelength, can calculate coherence 
time/length:

Result: (1 s, 1000 km) x (MHz / ma), 300 km.

● Momentum (DM flow!) encoded in spatial gradient of field



17

New “NMR” detection scheme

● Rajendran et al. have proposed a novel type 
of axion search

● Basic idea:
– Magnetize a sample of nuclei

– Oscillating axion field can induce various 
moments in particles (EDM, axial moment, …)

– Induced moments will cause spin precession → 
oscillating magnetization of sample

– When applied B hits resonance (axion mass), 
get a “big” signal. Read out with sensitive 
magnetometer (SQUID, SERF, ...)
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Nuclear electric dipole moment

● Axion-gluon coupling         can induce nuclear EDM:

● The resulting dipole moment dn is given by

● Assuming axion composes all of DM, we can 
calculate a, and we finally get

● The amplitude is independent of ma!

...unlike in axion-photon experiments, which lose much 
sensitivity for ma < μeV
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Measuring the EDM

● Apply Eext to material whose lattice structure 
produces strong internal E*

● Magnetize material with Bext ┴ E*

● Spins will precess around Bext @ fLarmor = 2μB

● EDM oscillates @ fEDM = ma/h, 
interacts with E*, causing 
add’l spin precession

● When B = ma/2μh, 
resonance!
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Sensitivity to oscillating EDM

Phase I: Current tech 
(optimize existing static 
EDM experiments). Probe 
ALPs but not QCD axion

Phase II: Combine 
improvements to existing 
tech, already shown in 
isolation but not together. 
Probe lighter QCD axions!

Red dashes: 
“Fundamental” limit from 
magnetization noise. 
Reachable with technology 
improvements. Fully 
covers QCD axion below 
ADMX range!
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Axial nuclear moment

● Axion-fermion coupling gives rise to

● The derivative in a provides sensitivity to DM 
velocity – directional detection!

 

● In background a field (e.g. DM), non-relativistic 
limit gives

● This causes the nuclear spin to precess around 
the DM velocity vector!
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Directional measurement

● Similar to EDM measurement, but no need for 
electric field

● Magnetize sample in direction orthogonal to vDM

● Again, spins precess around Bext @ fLarmor = 2μB

● Time-varying axial moment 
leads to precession around 
v at f = ma/h

● As before, f = fLarmor → 
resonance!
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Directional measurement sensitivity

Red line: Sensitivity for 
preliminary experiment using 
Xe

Blue line: Same for H

Dashed lines: Limit from 
magnetization noise

We see that the QCD axion is 
unlikely to be probed with 
current tech. Masses in 0.1 to 
1 μeV perhaps reachable in 
future.

Still, much ALP parameter 
space can be excluded, and 
any discovery would be 
directional
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Conclusion

● Axions are a well-motivated solution to the strong 
CP problem

● Additional axion-like particles are motivated by 
string theory

● Axions and ALPs are leading candidates for dark 
matter, together with WIMPs

● Using modest-to-challenging improvements to 
current technology, NMR techniques can probe 
light axions down to the peV level

● The first dark matter discovery may occur 
above ground!
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Thanks!

Now get back to your ROOT code
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