Purification Methds in Time Projection Chambers

> James Reed Watsor

Purification Methds in Time Projection Chambers

James Reed Watson

November 16, 2016

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Introduction

Purification Methds in Time Projection Chambers

- 1. Time Projection Chambers and Experiments
- 2. Importance of Purity
- 3. Measuring Purity
- 4. Purification Methods

Time Projection Chambers

Purification Methds in Time Projection Chambers

- Time Projection Chambers were created at LBL to study particle tracks [1].
- Particle interactions produce ionization and primary scintillation(S1)
- Electrons drifted through electric field up to wire grid to give radial and axial coordinate
- Drift time gives the z-coordinate

Purification Methds in Time Projection Chambers

> James Reed Watson

• Uses both gas and liquid phases for operation.

 Near the anode, the electrons are extracted through the gas phase using another electric field.

• Extraction produces scintillation (S2), proportional to the extraction field.

 Allows for the study of ionization and scintillation simultaneously[3]

Figure: Lux-Zepplin (SLAC)

Choice of detector medium

Purification Methds in Time Projection Chambers

> James Reed Watson

Requirements for TPC medium

- Scintillates; transparent to scintillation frequency
- Dense: more targets for incoming particles

- Chemically inert: ionization doesn't cause chemical reactions
- Manageable boiling point: so it can be boiled and liquified easily

<ロ> (四) (四) (注) (日) (三)

Xenon checklist

Purification Methds in Time Projection Chambers

> James Reed Watson

- Noble gas
- \bullet Boils at 161 K (For reference, LN_2 is 77K)
- Liquid phase density: 3.1 g/cm³ (For reference: granite is 2.75 g/cm³)
- Xenon Scintillation light: 178 nm[4]. Xenon has no strong arbsorption lines at that wavelength[3].

Figure: Xenon bulb (images-of-elements.com)

The Need for Purity

Purification Methds in Time Projection Chambers

> James Reed Watson

- Xenon is good for TPCs, so why don't we just buy a bunch of it?
- Radioactive impurities will create events which cause problems for rare event searches.
- Electronegative impurities will absorb ionization signal
- Impurities will absorb scintillation signal

<ロ> (四) (四) (注) (日) (三)

Rare Events

Purification Methds in Time Projection Chambers

- Current Limits on dark matter: 10⁻⁴⁵ cm² for 10 GeV WIMP(LUX 2016)[5]
- Current limits on $0
 u\beta\beta$ decay: 2.1×10²⁵ years (GERDA 2016)[6]
- Current limits on $Br(\mu^+ \rightarrow e^+\gamma) < 4.2 \times 10^{-13}$ [8].
- Need to eliminate backgrounds and other obstacles to observing these events.

Obtaining Xenon

Purification Methds in Time Projection Chambers

> James Reed Watson

- Xenon is manufactured using cryogenic fractional distillation[7].
- Air is passed through filters, then liquified.
- Volatile gases are boiled off, then less volatile liquids are condensed until relatively pure liquids are produced.
- Xenon is commercially available at impurities of 50 ppm[8].

(ロ) (同) (E) (E) (E)

9/27

Figure: Composition of the atmosphere (wikipedia.org)

Radioactive Impurities

Purification Methds in Time Projection Chambers

> James Reed Watson

- Radioactive impurities will cause the detector to trigger
- Particularly bad: inert, long half-life, low energy emitters
- Main emitters inside the Xenon are

radioactive isotopes, Radon, and Krypton

• Ultimately we want these impurities to be removed, and then to be able to estimate how much remains.

(ロ) (同) (E) (E) (E)

Xenon Isotopes

Purification Methds in Time Projection Chambers

- Longest lived Xe isotope: $^{127} \rm Xe$ with $\tau_{1/2} =$ 36 days [9].
- Dark matter experiments generally wait for activated Xe to decay, then look for the 35 keV γ from ¹²⁷Xe decay path to estimate contamination.
- The Enriched Xenon Observatory centrifuge natural Xe until ¹³⁶Xe is enriched [10].

Figure: Xenon decay channel [11]

Centrifugal Enrichment

Purification Methds in Time Projection Chambers

> James Reed Watson

- Why isn't centrifugal enrichment used all the time?
- Expensive: both in terms of time and money
- Waste: you end up with depleted Xenon
- Xenon decays quickly as it is
- Will end up being activated unless it is taken underground immediately

Figure: Gas Centrifuge (wikipedia.org)

Radon

Purification Methds in Time Projection Chambers

- Noble gas, hard to remove
- ²²²Rn Decay chain relatively fast, easily identified by 7 MeV α emission from ²¹⁴Po decay.
- Nothing in particular is done to remove Radon from Xenon in most TPC experiments.
- Most experiments are worried about sources of Radon, i.e. from the detector materials.

⁸⁵Kr

Purification Methds in Time Projection Chambers

- $^{85}\mathrm{Kr}$ has $\tau_{1/2}=11$ years.
- LUX and XENON removed Krypton with a charcoal distillation column.
- Xe was passed through a column of charcoal, where Xe and Kr adsorbed at different rates.
- LUX reported ^{*nat*}Kr levels of 4 ppt, and 3.6 low energy backgrounds in 90 days.
- Decays into an unstable ⁸⁵Kr state, so the "double bang" signal can be used to estimate contamination.

Figure: Charcoal (instructables.org)

Electronegative Impurities

Purification Methds in Time Projection Chambers

> James Reed Watson

- Why do electronegative impurities matter?
- Absorption of scintillation light
- Quenching of scintillation light
- Absorption of electrons
- Electronegative impurities include O₂, H₂O, N₂, and essentially any organic molecule.
- The effects of the impurities may be used to estimate their contamination level

Figure: Water molecule (wordpress.com)

・ロト ・回ト ・ヨト ・ヨト

Estimating Impurities - Scintillation Quenching

Purification Methds in Time Projection Chambers

> James Reed Watson

• Xenon/ Argon scintillation mechanism [12]

$$\begin{array}{lll} \mathsf{X}\mathsf{e}^* + \mathsf{X}\mathsf{e} + \mathsf{X}\mathsf{e} \to \mathsf{X}\mathsf{e}_2^* + \mathsf{X}\mathsf{e} & \mathsf{A}\mathsf{r}^* + \mathsf{A}\mathsf{r} + \mathsf{A}\mathsf{r} \to \mathsf{A}\mathsf{r}_2^* + \mathsf{A}\mathsf{r} \\ \mathsf{X}\mathsf{e}_2^* \to 2\mathsf{X}\mathsf{e} + \gamma & \mathsf{A}\mathsf{r}_2^* \to 2\mathsf{A}\mathsf{r} + \gamma \end{array}$$

• Both Xe and Ar excited states (eximers) have triplet and singlet states, all with different lifetimes.

$$\tau(\mathsf{Xe}_{\mathcal{T}}) = 21ns \qquad \tau(\mathsf{Xe}_{\mathcal{S}}) = 4.1ns$$

$$\tau(\mathsf{Ar}_{\mathcal{T}}) = 1.1 - 1.6\mu s \qquad \tau(\mathsf{Ar}_{\mathcal{S}}) = 4 - 6ns$$

• Process may be quenched in the presence of Oxygen

$$Ar_2^* + O_2 \rightarrow 2Ar + O_2$$

• Which leads to a reduction in the Argon triplet lifetime, which may be used to measure the impurity level. [13]

$$\frac{1}{\tau_T'} = \frac{1}{\tau_T} + k_Q[O_2]$$

Estimating Impurities - Ionization Electron Absorption

Purification Methds in Time Projection Chambers

> James Reed Watson

Electrons will attach to Oxygen molecules

$$e_2 + O_2
ightarrow O_2^-$$

 In the limit that electron concentration is much less than the oxygen concentration, the ionization electron lifetime can be estimated by

$$\frac{1}{\tau_e} = k_e[O_2]$$

Where k_e is the drift-field dependent rate constant, equal to 1.9 ppm⁻¹ μ s ⁻¹ at 1 kV/cm.

Figure 2. Time evolution of τ_e [Top] and O₂ concentration [Bottom] in the WAtP 2.3 It chamber during Argon purification process. The O₂ concentration values are inferred assuming the k_e value as known, 1.9 pm⁻¹ μ s⁻¹ ± 25 %.

Figure: Cavanna et al. 2010

Estimating Impurities - Scintillation Light Absorption

Purification Methds in Time Projection Chambers

> James Reed Watson

- Even though Ar and Xe are transparent to their own scintillation, impurities may absorb well in the VUV range.
- Probability of absorption per path length is k_A , the mean free path is l_A :

$$\frac{1}{l_A} = k_A[O_2] = \sigma_A(\lambda)n(O_2)[O_2]$$

• This gives an expression for photon survival rate as a function of distance :

$$T_A(x,\lambda,[O_2]) = e^{-xk_A[O_2]}$$

 In the Argon scintillation region, relevant process is Oxygen dissociation into triplet and singlet states

(ロ) (同) (E) (E) (E)

Electroluminescence

Purification Methds in Time Projection Chambers

- An additional consideration of the purity is that near the electrodes, breakdown occasionally occurs[17].
- Breakdown causes flashes, which in the time projection chamber gets picked up by the photomultiplier tube.
- At the high voltages that are experienced in TPCs, this electroluminescence will cause problems for rare event searches.
- This electroluminescence is thought to be at least partially caused by the impurities within the medium (whether that be Argon or Xenon).

Electropositive purifications

Purification Methds in Time Projection Chambers

- So how do we get rid of electronegative impurities?
- Logical guess: react them with metals (which oxidize easily)
- Desire compounds that absorb a large amount of a wide variety of impurities for a given weight of material.
- Titanium fits these requirements, as it burns in Nitrogen.
- Zirconium is also good for these purposes as one can heat it to remove the reacted layers.

Figure: Titanium (images-of-elements.org)

Getters

Purification Methds in Time Projection Chambers

> James Reed Watson

- Getters are coatings applied to chambers which react with certain gases.
- Frequently used to maintain vaccuums, but they can also be used to purify inert gases.
- LUX used a Zirconium getter for continuous purification of its Xenon.
- Commercially available getters perform well enough for this purpose
- LUX's getter allowed for a drift length of 1.34 m, which is almost 3x the height of the active region (this is field dependent but is roughly in the ppt range)[15]

Figure: Getter Pills (saesgetters.com)

Heat Exchangers

Purification Methds in Time Projection Chambers

> James Reed Watson

- Disadvantage of getters are that they can only be used in the gas phase
- Detection medium must be pumped out, evaporated, gettered, then condensed and reintroduced into the detector.
- Process is made more efficient by having the outgoing liquid cool the incoming, purified gas.
- LUX used two heat exchangers to accomplish this, and achieved a > 94% heat exchange efficiency [15]

Titanium Sponges

Purification Methds in Time Projection Chambers

> James Reed Watson

- Pourous first stages of titanium manufacture
- Can be heated in vaccuum to remove oxide layer
- High surface area allows for a large fraction of its mass to react with the electronegative impurities.
- Has the potential to be used in situ and periodically replaced.

Figure: Titanium Sponge (images-of-elements.com)

Molecular Sieve

Purification Methds in Time Projection Chambers

> James Reed Watson

- Frequently used in either initial or continuous purification
- Liquid or gas phase is pumped through holes, which only absorb molecules below a certain size.
- The MEG experiment tested a centrifugal pump and a 13 Å sieve, which brings the impurities down from 250 ppb to 40 ppb [8].

Figure: Molecular sieve beads (hengyeusa.com)

Spark Gap Purification

Purification Methds in Time Projection Chambers

> James Reed Watson

- XENON proposal includes the use of a spark purifier [16].
- Titanium plates have a voltage put across them, causing an arc
- Bits of the plates are chipped off, which then reacts with the impurities.
- Has the advantage of being able to be used in the liquid phase.

Figure: Example of arcing between conductors (wikipedia.org)

・ロト ・回ト ・ヨト ・ヨト

Purification Methds in Time Projection Chambers

> James Reed Watson

Conclusion:

- Impurities within the TPC scintillator will cause issues during rare event searches
- Radioactive impurities are removed either by waiting for them to decay, or removal through a distillation column
- Electronegative impurities are removed in a variety of ways, commonly a getter, molecular sieve, or spark discharge purifier.
- Impurity levels can be measured by either looking for distinct signals, or taking a measurement of electron/triplet lifetime.

References I

Purification Methds in Time Projection Chambers

- [1] http://science.energy.gov/lawrence/award-laureates/1980s/nygren/
- [2] Kaixuan Ni, "Development of a Liquid Xenon Time Projection Chamber for the XENON Dark Matter Search," PhD Thesis, Columbia University,2006
- [3] http://physics.nist.gov/PhysRefData/ Handbook/Tables/xenontable2.htm
- [4] arXiv:physics/0203011
- [5] arXiv:1512.03506
- [6] arXiv:1504.08285 [hep-ex]
- [7] Payne, R.T., "Purification of Inert Gases to High Purity," R.D. Mathis Company
- [8] arXiv:1605.05081
- [9] Measurement and Analysis of WIMP Detection Backgrounds, and Characterization and Performance of the Large Underground Xenon Dark Matter Search Experiment by David Charles Malling, Ph.D., Brown University, May 2014
- [10] arXiv:1202.2192
- [11] Rodrigues et al., "Standardization of xenon-127 and measurement of photon emission intensities", Applied Radiation and Isotopes, Vol. 87, p. 342, May 2014

References II

Purification Methds in Time Projection Chambers

> James Reed Watson

[12] arXiv:0910.4956v1 [hep-ex]

- [13] Cavanna et al., " Oxygen contamination in liquid Argon: combined effects on ionization electron charge and scintillation light," IOP Publishing, 2010
- [14] Mihara et al, "Development of a method for liquid xenon purification using a cryogenic centrifugal pump," Cryogenics 46, 2006
- [15] Bradley, A., "LUX THERMOSYPHON CRYOGENICS AND RADON-RELATED BACKGROUNDS FOR THE FIRST WIMP RESULT," Ph.D. Thesis, Case Western University, May 2014.
- [16] Aprile et al, "XENON: A Liquid Xe Dark Matter Search Experiment at LNGS," Brown University

[17] arXiv:1403.3613