Tales from the Dark Sector: Searches for Dark Photons

Patrick McCormack

November 2, 2016

Part I: What are Dark Photons?

The Dark Sector

- Dark matter interacts with regular matter gravitationally
 - Gravity doesn't tell us anything very specific about what dark matter IS though
- Perhaps there is a whole "hidden sector" of matter governed by it's own interactions

$\mathcal{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{8}tr(\mathbf{W}_{\mu\nu}\mathbf{W}^{\mu\nu}) - \frac{1}{2}tr(\mathbf{G}_{\mu\nu}\mathbf{G}^{\mu\nu})$	(U(1), SU(2) and SU(3) gauge terms) $\left({\rm U}(1), {\rm SU}(2), {\rm SU}(3), {\rm S$	(U(1), SU(2) and SU(3) gauge terms)	$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$
$+(\bar{\nu}_L, \bar{e}_L) \bar{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R \sigma^{\mu} i D_{\mu} e_R + \bar{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (h.c.)$	(lepton dynamical term)	(lepton dynamical term)	+ $(\tilde{\nu}_L, \tilde{e}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \tilde{e}_R \sigma^{\mu} i D_{\mu} e_R + \tilde{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (h.c.)$
$-\frac{\sqrt{2}}{v}\left[\left(\bar{\nu}_L,\bar{e}_L\right)\phi M^e e_R+\bar{e}_R \bar{M}^e \bar{\phi} \left(\frac{\nu_L}{e_L}\right)\right]$	(electron, muon, tauon mass term)	(electron, muon, tauon mass term)	$-\frac{\sqrt{2}}{v}\left[\left(\bar{\nu}_{L},\bar{\epsilon}_{L}\right)\phi M^{c}e_{R}+\bar{e}_{R}\bar{M}^{c}\bar{\phi}\left(\frac{\nu_{L}}{e_{L}}\right)\right]$
$-\frac{\sqrt{2}}{v}\left[\left(-\bar{e}_{L},\bar{\nu}_{L}\right)\phi^{*}M^{\nu}\nu_{R}+\bar{\nu}_{R}\bar{M}^{\nu}\phi^{T}\left(\begin{array}{c}-e_{L}\\\nu_{L}\end{array}\right)\right]$	(neutrino mass term)	(neutrino mass term)	$-\frac{\sqrt{2}}{v}\left[\left(-\tilde{e}_L, \tilde{\nu}_L\right)\phi^*M^\nu \nu_R + \tilde{\nu}_R \tilde{M}^\nu \phi^T \left(\frac{-e_L}{\nu_L}\right)\right]$
$+(\tilde{u}_L, \tilde{d}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \tilde{u}_R \sigma^{\mu} i D_{\mu} u_R + \tilde{d}_R \sigma^{\mu} i D_{\mu} d_R + (\text{h.c.})$	(quark dynamical term)	(quark dynamical term)	$+(\tilde{u}_L, \tilde{d}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \tilde{u}_R \sigma^{\mu} i D_{\mu} u_R + \tilde{d}_R \sigma^{\mu} i D_{\mu} d_R + (h.c.)$
$-\frac{\sqrt{2}}{v}\left[\left(\tilde{u}_L, \tilde{d}_L\right)\phi M^d d_R + \tilde{d}_R \tilde{M}^d \tilde{\phi} \left(\begin{matrix} u_L \\ d_L \end{matrix} \right) \right]$	$({\rm down}, {\rm strange}, {\rm bottom\ mass\ term})$	(down, strange, bottom mass term)	$-\frac{\sqrt{2}}{v}\left[\left(\bar{u}_{L},\bar{d}_{L}\right)\phi M^{d}d_{R}+\bar{d}_{R}\bar{M}^{d}\bar{\phi}\left(\frac{u_{L}}{d_{L}}\right)\right]$
$-\frac{\sqrt{2}}{v}\left[\left(-\bar{d}_L,\bar{u}_L\right)\phi^*M^u u_R+\bar{u}_R\bar{M}^u\phi^T\left(\begin{array}{c}-d_L\\u_L\end{array}\right)\right]$	(up, charmed, top mass term)	(up, charmed, top mass term)	$-\frac{\sqrt{2}}{v}\left[\left(-\bar{d}_L,\bar{u}_L\right)\phi^*M^u u_R + \bar{u}_R \bar{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix}\right]$
$+\overline{(D_{\mu}\phi)}D^{\mu}\phi-m_{h}^{2}[\bar{\phi}\phi-v^{2}/2]^{2}/2v^{2}.$	(Higgs dynamical and mass term) (1)	(Higgs dynamical and mass term) (1)	$+ \overline{(D_\mu \phi)} D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2 / 2v^2.$

3

Dark Matter and the Standard Model

- What other ways could dark matter interact with standard model particles?
 - Axions
 - [Sterile] Neutrinos
 - Higgs Coupling
 - Dark Photons

What are Dark Photons?

- Standard model: $SU(3)_C \times SU(2)_L \times U(1)_Y$
- Imagine that dark sector matter is charged under a $U(1)_X$ gauge symmetry
- Its gauge boson is the Dark Photon, A' (but it could have some Z-like properties)
- Unified theory:

$$\mathcal{L}_{U(1)} = -\frac{1}{4} F^{1}{}_{\mu\nu} F^{1\mu\nu} - \frac{1}{4} F^{2}{}_{\mu\nu} F^{2\mu\nu} - \epsilon F^{1}{}_{\mu\nu} F^{2\mu\nu}$$

• Notice the mixing term!

Kinetic Mixing

- In general, dark photons can be massive
- There can be kinetic mixing between dark and regular photons (or in some models the Z too)
- This leads to an effective interaction:

$$\epsilon e A'_{\mu} J^{\mu}_{EM}$$

Phenomenology of A' and EM

- Two mass ranges are considered:
- $m_{A'} > 2m_e$
 - A' can decay into charged particles (e.g. e^+e^- , $\mu^+\mu^-$)
 - A' could decay to light hidden sector matter that would in turn decay to ordinary matter
- $m_{A'} < 2m_e$
 - A' cannot decay to charged particles
 - Only a decay to three γ 's would be allowed
 - At low enough mass, one should see $A' \rightarrow \gamma$ oscillations

Is this well motivated?

- There is an excess in cosmic ray e⁺ compared to e⁻
 DM annihilation to dark photons could help explain this
- Dark photons could serve as a mediator in DMnucleon scattering in direct detection experiments
- Dark photons could provide a means of DM longrange self interaction, which could explain observed DM structure formation in galaxies
- A' itself could be the DM of the universe! (If $m_{A\prime} \sim 100 \text{ keV}$)

Part II: Searches for Dark Photons

Electron Beam Dump

- A high intensity electron beam is dumped onto a fixed target
- As the electrons scatter through the target, they can produce dark photons (similar to bremsstrahlung)
- A detector is placed directly behind the target and shielding (used to block SM backgrounds)
- This is well suited for exploring m_A , in the range ~1-100 MeV and small ϵ
 - ϵ must be small enough that A' doesn't decay in the shield and large enough that a significant number of A' are produced

- Searches have been performed at
 - SLAC
 - Fermilab
 - KEK
 - Orsay

LABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

A sample experimental setup from SLAC. The target here was aluminum. arXiv:1406.2698 [hep-ph]

Electron Fixed-Target

- Once again, a high-current electron beam is shot onto a fixed target, and the A' is radiated of electrons that scatter off the target nuclei
- Similar to electron beam-dump, but generally lower energy electrons (.1-1 Gev vs 10-100 GeV)

– Useful for investigating shorter A' lifetimes

 Looking for e⁺e⁻ mass resonances and displaced vertices

Example: A' Experiment (APEX)

- JLab Hall A
- Uses double-arm spectrometer
- Looks for a bump in the e⁺e⁻ invariant mass distribution
- Beam energy and spectrometer angle actively varies to explore regions of invariant mass

Setup of the APEX experiment arXiv:1108.2750 [hep-ex]

Example: Heavy Photon Search (HPS)

- JLab Hall B
- Si-Strip vertex tracker in magnet
- Measures invariant mass and decay points of e^+e^- pairs
- Better signalbackground discrimination

HPS experimental layout http://www.sciencedirect.com/science/article/pii/S016 8900214014582

Example: DarkLight

- Jlab FEL
- Beam incident on hydrogen gas target in solenoidal magnet
- Compact, magnetic spectrometer
 - Silicon detectors (recoil protons)
 - Low mass tracker (leptons)
 - Shower counters (photons)
- Full kinematic reconstruction

Sample DarkLight event https://www.cfa.harvard.edu/events/2014/sackler/inde x/talks/Harvard2014_Epstein.pdf

Proton Beam Dump

- Often a reanalysis of data from neutrino experiments (e.g. LSND, NOMAD, PS 191, CHARM)
- Pseudoscalar vectors produced by these collisions may decay to $\gamma A'$
- Dedicated beam dump run at MiniBooNe has been proposed

Proposed MiniBooNe beam dump mode

Electron-Positron Colliders

• Use large datasets from e.g. KLOE ($DA\Phi NE$), BABAR (PEP-II), Belle (KEK-B), BESIII (BEPC)

•
$$e^+e^- \rightarrow \gamma A'$$
, $A' \rightarrow l^+l^-$

- $e^+e^- \rightarrow h'A'$ (where h' is a new light scalar particle)
- Mesons could also decay to A'

FIG. 4 (color online). Upper limit (90% C.L.) on the mixing strength ϵ as a function of the dark photon mass. The values required to explain the discrepancy between the calculated and measured anomalous magnetic moment of the muon [39] are displayed as a red line.

http://physics.aps.org/featured-articlepdf/10.1103/PhysRevLett.113.201801

Rare Kaon Decays

 Dedicated rare Kaon decay experiments are sensitive to:

$$-K^{+} \rightarrow \mu^{+} \nu A', A' \rightarrow e^{+} e^{-}$$
$$-K^{+} \rightarrow \pi^{+} A' A' \rightarrow e^{+} e^{-}$$

• ORKA, NA62, TREK/E36

ORKA detector schematic diagram

CDF COT removal (the ORKA detector fits within the COT) https://orka.bnl.gov/

Proton Colliders

- High COM energy could lead to production of novel heavy particles directly
- New particles could decay to A' (perhaps a dominant decay chain even)
- GeV-scale A' could produce highly collimated jets mostly composed of leptons
- Search for events with large missing transverse energy
- Search for events with particular di-lepton mass (which would be the A' mass)

Within ATLAS

- Mostly focused on A' heavy enough to decay to muons
- Has conducted searches for Higgs to electron lepton-jets and Higgs to longlived A'

https://arxiv.org/pdf/1409.0746.pdf

Dark Photons from the Earth's Core

- Dark matter may accumulate in the center of the Earth
- This dark matter could self annihilate $XX \rightarrow A'A'$
- The A' could then propagate up and decay to SM particles
- These particles could then be detected by underground/ice/water experiments such as
 - SuperK
 - IceCube
 - ANTARES
 - DUNE

Model for A' production within the Earth. IceCube used here as example. A signal from within the Earth would be a sign of dark matter. arXiv:1509.07525 [hep-ph]

Dark Sunshine

- DM accumulates in Sun and self-annihilates
- Essentially the opposite of deep earth searches
 - But here magnetic forces of Sun and Earth can distort directionality
 - Probes longer lifetimes
- These searches use space based detectors such as Fermi Large Area Telescope or the Alpha Magnetic Spectrometer

Model for A' production within the Sun. AMS used here as example. <u>arXiv:1602.01465</u> [hep-ph]

Exclusion Plots

Parameter space for searches for A' with mass greater than $2m_e$. Shaded regions represent 90% CL. Right hand plot is a zoomed in version of the left to detail higher ϵ searches. <u>arXiv:1311.0029</u> [hep-ph]

Parameter space for searches for A' with mass less than $2m_e$. Shaded regions represent 90% CL. Regions where A' could account for all Big Bang DM are shown in red. <u>arXiv:1311.0029</u> [hep-ph]

Dark matter searches that aren't deep underground?

- Some of these searches do in fact repurpose neutrino or direct dark matter search detectors e.g.:
 - Center of the Earth A'
 - Proton Beam dump
- Most of these searches rely on producing A' in the lab
 - Standard shielding is used in lab
 - Dominant backgrounds are not long-lifetime nuclear decays, but SM particles
 - Directionality of A' decay particles is well understood in the experiment

Sources

- "Dark Sectors and New, Light, Weakly-Coupled Particles", <u>arXiv:1311.0029</u> [hep-ph]
- "Search for Dark Photon in e+e- Collisions at BaBar", <u>http://physics.aps.org/featured-article-</u> <u>pdf/10.1103/PhysRevLett.113.201801</u>
- "Dark Sunshine: Detecting Dark Matter through Dark Photons from the Sun", <u>arXiv:1602.01465</u> [hep-ph]
- "Dark Photons from the Center of the Earth: Smoking-Gun Signals of Dark Matter", <u>arXiv:1509.07525</u> [hep-ph]
- "Dark matter and a new gauge boson through kinetic mixing", arXiv:1011.3300 [hep-ph]
- "Kinetic mixing and symmetry breaking dependent interactions of the dark photon", <u>arXiv:1409.2082</u> [hep-ph]
- http://hallaweb.jlab.org/experiment/APEX/
- https://confluence.slac.stanford.edu/display/hpsg/Heavy+Photon+Search +Experiment