

Organic Liquid Scintillator Detector Technology

Henoch Wong

Physics 290E – Fall 2016 14 September 2016

Outline

- Introduction
 - What are liquid scintillators?
 - How does it work?

- Properties & Characteristics
 - Why do we use liquid scintillators in detectors?

- Future
 - Where is the technology headed?

Liquid Scintillator 101

INTRODUCTION

Liquid Scintillator Detectors

- Particle deposits energy as it travels through liquid scintillator
- 2. Liquid fluoresces, emitting visible light

3. Light is picked up by photosensors

Current Liquid Scintillator Detectors

NOvA (USA) Accelerator Neutrino Beam

KamLAND-ZEN (Japan) ¹³⁶Xe -> ¹³⁶Ba

Borexino (Italy) Solar Neutrino

Daya Bay (China) Reactor Anti-Neutrino

Inorganic Liquid Scintillator

What this talk is not about!

• Liquefied Noble Elements (LAr, LXe, LKr)

LUX (Liquid Xe TPC) – Dark Matter

DUNE (Liquid Ar TPC) – Neutrino 50 10 15 20

"Cocktail" Recipe

- Liquid Scintillators contains two main ingredients:
- 1. Solvent
- 2. Scintillator (Fluor)

Multiple scintillators can be present, with each addition a "Wavelength Shifters"

Solvent

- Properties of solvent:
 - Must efficiently absorb deposited energy from particle (aromatic rings with π -electron cloud are excellent)
 - Scintillators (fluors) should be soluble in the solvent

List of Solvents

nt	Structure	Relative Pulse Height	Flash- Point (°C)
Frimethylbenzen documene)	e CH ₃ CH ₃ CH ₃	112	50
methylbenzene ene)	сн-Сн-сн-	110	30
lbenzene ne)	СН.	100	5
ne	\bigcirc	85	-11
oxane	\bigcirc	65	12
ylbenzene Alkyl Benzene ((CH ₂),1CH ₃	91	150
nyl-1-(3,4-dimetl	hylbenzene)ethane	114	150
	<hr/>	≻−CH₃ CH₃	
-isopropyinaphti)	CH ₂ CH ₃	114	150
	nt Frimethylbenzen documene) () methylbenzene ne) () lbenzene Alkyl Benzene Alkyl Benzene () -isopropylnaphth)	Att Structure Trimethylbenzene documene) CH ₃ CH ₃ CH ₃ methylbenzene ne) CH ₃ Ibenzene ne) CH ₃ oxane CH ₃ oylbenzene Alkyl Benzene (LAB) (CH ₂), CH ₃ nyl-1-(3,4-dimethylbenzene)ethane CH ₃ CH ₃ -isopropylnaphthaline CH ₃ CH ₃	Relative Relative Relative Pulse Height Trimethylbenzene CH ₃ 112 methylbenzene CH ₃ CH ₃ 110 lbenzene CH ₃ CH ₃ 100 ne B5 65 oxane 65 cylbenzene CH ₂), CH ₃ 91 nyl-1-(3,4-dimethylbenzene)ethane 114 -CH ₃ 114 -CH ₃ 114 -CH ₃ 114

"Classical Cocktails"

- Toxic
- Carcinogenic
- Low Flash Point
- Cowan & Reines used Toluene
- Pseudocumene most popular (Borexino, KamLAND, NOvA)

"Safer Cocktails"

- LAB identified as promising solvent by SNO+, now also used by Daya Bay and RENO
- PXE used by Double-CHOOZ

Primary Scintillator

- 1. The dipole-dipole interaction between the excited solvent and scintillator leads to a radiationless transfer of energy
- 2. Excited scintillator emits UV light

Primary Scintillators			
Scintillator	Structure	Emission Wavelength	
Butyl PBD 2-[4-biphenylyl]-5-[4- <i>tert</i> -butyl- phenyl]-1,3,4-oxadiazole) Order No. SFC-20		363nm	
Naphthalene Order No. SFC-40		322nm	
PPO 2,5-diphenyloxazole Order No. SFC-10 Most commonly used in	experiments	357nm	
<i>p</i> -Terphenyl Order No. SFC-50		340nm	

Secondary Scintillator (Wavelength Shifter)

• Early photomultiplier tubes sensitivity dropped below 400 nm

Figure 33.1: Cartoon of scintillation "ladder" depicting the operating mechanism of organic scintillator. Approximate fluor concentrations and energy transfer distances for the separate sub-processes are shown.

Cowan & Reines (Savannah River Plant) used Dumont 6364 PMT

DU MONT TYPE 6363 MULTIPLIER PHOTOTUBE

GENERAL CHARACTERISTICS

Wavelength at maximum response	4400 ± 500	Angstroms
 Wavelength at 10% of maximum re- sponse on long wavelength side	6125 ± 275	Angstroms
Wavelength at 10% of maximum re- sponse on short wavelength side	3250 ± 250	Angstroms

Secondary Scintillator (Wavelength Shifter)

- Modern photomultiplier tubes are capable of detecting UV lights from primary scintillators
- Secondary scintillator are regularly used to improve performance:
 - Solvent more "transparent" to high wavelength light
 - Reduce "self-absorption" (overlap of absorption and emission spectra)

Whitepaper for LENA (10.1016/j.astropartphys.2012.02.011)

Solute	PPO	Bis-MSB
Chemical formula	$C_{15}H_{11}NO$	$C_{24}H_{22}$
Absorption maximum	$303\mathrm{nm}$	$345\mathrm{nm}$
Emission maximum	$365\mathrm{nm}$	$420\mathrm{nm}$
Stokes' shift:	62 nm	75 nm

Liquid Scintillator for Neutrino experiments

Experiment	LS	Extractant	Fluors/Shifters
Cowan and Reines	Cd-loaded toluene	carboxylate in methanol	αΝΡΟ
Palo Verde	40% PC + 60% Mineral oil	carboxylate	4 g/L PPO + 100 mg/L bis-MSB
CHOOZ	50% Norpar-15 (paraffinic liquid) + 50% IPB (isopropylbiphenyl)	hexanol	1 g/L p-TP + bis-MSB
Eljen	Anthracene + PC	n/a	3 g/L PPO + 0.3 g/L POPOP
Bicron	PC or Mix of PC+MO	EHA	unknown
Borexino	PC	n/a	1.5 g/L PPO or p-TP + bis-MSB
MiniBooNE	МО	n/a	n/a
LENS	LAB	carboxylate	3g/L PPO + 15mg/L MSB
Daya Bay	LAB	carboxylate	3g/L PPO + 15mg/L MSB
SNO+	LAB	carboxylate	2g/L PPO
Reno	LAB	carboxylate	3g/L PPO + 15mg/L MSB
Double-CHOOZ	20%PXE+80%dodecane	b-diketonate	6g/L PPO + 20mg/L MSB
KamLAND	20% PC + 80% dodecane	n/a	1.52 g/L PPO
NOvA	5% PC + 95% MO	n/a	1.2 g/L PPO + 17 mg/L MSB
LENA	PXE/LAB withdodecane	n/a	PPO/MSB or ?

From Minfang Yeh (BNL) Talk

5

https://indico.fnal.gov/getFile.py/access?contribId=18&sessionId=11&resId=2&materialId=slides&confId=3356

Cost / Attenuation Length / Energy Response / Doping

PROPERTIES & CHARACTERISTICS

Particle Data Group: Detector Technology (2015)

34.3.1.1. Liquid scintillator detectors:

Past and current large underground detectors based on hydrocarbon scintillators include LVD, MACRO, Baksan, Borexino, KamLAND and SNO+. Experiments at nuclear reactors include CHOOZ, Double CHOOZ, Daya Bay, and RENO. Organic liquid scintillators (see Sec. 33.3.0) for large detectors are chosen for high light yield and attenuation length, good stability, compatibility with other detector materials, high flash point, low toxicity, appropriate density for mechanical stability, and low cost.

Scintillation detectors have an advantage over water Cherenkov detectors in the lack of Cherenkov threshold and the high light yield. However, scintillation light emission is nearly isotropic, and therefore directional capabilities are relatively weak. Liquid scintillator is especially suitable for detection of low-energy events.

<u>Detector sensitivity</u> <u>to solar neutrino</u>

arXiv:1504.02154 [nucl-ex] - Gabriel

14

Current Experiment

Dark Matter

XENON100 (165kg) LUX (370kg) PandaX-II (500kg)

Future Experiments

XENON1T (3.5 tonne) LZ (7 tonne) PandaX-IV (20 tonne)

<u>Ονββ</u>

EXO-200 (200kg)

nEXO (5 tonne) 15

Sourcing Solutions \lor Services & Membership \lor Help & Community \lor

Selection

000	ACROS BEGANCS
-----	------------------

2,5-Diphenyloxazole, Scintillation Grade 99%, ACROS Organics™

\$32.99 - \$1384.30

Chemical Identifiers

AS	92-71-7
AS Min %	98.5
AS Max %	100.0
ssay Percent Range	99%
lolecular Formula	C ₁₅ H ₁₁ NO
ormula Weight	221.26g/mol
DL Number	MFCD00005306
nonym	PPO
nemical Name or Material	2, 5-Diphenyloxazole, 99%
ssay	98.5% min.

PPO ~\$0.5 per g

Products 4 **Description & Specifications Catalog Number** Mfr. No. Quantity Packaging Price Quantity & Availability 2.5kg AC117380025 Acros Organics Plastic bucket Each for \$1,384.30 Add to Cart GSA/VA 117380025 **Check Availability** SDS

bis-MSB [p-bis-(o-methylstyryl)-benzene], Scintillation Grade, 1 Kilogram

Home

Home

Biochemicals

Scintillation Counters

bis-MSB, 1 KG

	Price \$ 2,950.00
Sa 111078 REPERSENTED REPERSENT Internetive Interneti	5 G 25 G 1 KG \$ 49.50 \$ 149.50 \$ 2950.00 SKU: 111078 Pack Size: 1 KG Low Stock
	Quantity - 1 +

Bis-MSB ~\$0.003 per mg

Cost of Liquid Scintillator

Schematic of Daya Bay antineutrino detector

Attenuation Length

The attenuation length is the distance (λ) where the intensity drops to 1/e (63% probability of absorption)

Probability of light reaching a depth x

$$P(x)=e^{-x/\lambda}$$

5m height

Want λ large so light can reach PMT unimpeded!

LBNL Attenuation Length Measurement (1)

Cheng-Ju Lin – LBNL Senior Staff Scientist²¹

LBNL Attenuation Length Measurement (2)

Top view photograph of the optical system:

LBNL Attenuation Length Measurement (3)

More photographs of the system:

LBNL Attenuation Length Measurement (4)

Basic physics of the system

- Overall principle:
 - light beam is sampled <u>before</u> going through the liquid (reference PMT) and <u>after going through the liquid (signal PMT)</u> analogous to a long baseline neutrino oscillation experiment!
 - The attenuation length is extracted from the ratio between the signal and reference PMTs as a function of pathlength in the liquid
 - This way, most systematic effects cancel to first order (namely, all those that are common to the reference and signal measurements)
- Example of a nice attenuation length measurement (with dirty water):

- reference is quite stable
- signal shows a clear trend with pathlength (position)
 Ratio vs. pathlength gives clear exponential shape, whose slope's inverse yields the attenuation length 24

Daya Bay LS Attenuation Length

• LBNL measurement:

Preliminary results with <10% uncertainty

LED wavelength	470 nm	430 nm	405 nm
Gd-LS attenuation length	24.5 m	17.0 m	15.3 m

• Beijing Measurement:

Attenuation length measurements of a liquid scintillator with LabVIEW and reliability evaluation of the device

Chinese Physics C, Volume 37, Number 7

Fig. 1. Experimental set up.

 λ (Liquid Scintillator) = ~20m

Size of detectors

Energy Response of Liquid Scintillators

Is the amount of scintillation proportional to energy deposited into the liquid scintillator?

Liquid scintillator response is non-linear!

Birks' Formula

• J B Birks developed a semi-empirical model:

Light produced should be proportional to ionization of LS

However too much ionization will damage the LS molecules ability to scintillate. Assume damage is also proportional to ionization

- L : Luminescence
- k_B : Birks' constant
- E : Energy deposited
- x : Distance traverse in LS

When dE/dx is ...

- 1. Small: $L = L_0 * E_{deposited}$ (Linear Response)
- 2. Large: $L = L_0/k_B *$ distance (Non-Linear Response)

LBNL LS Energy Response Measurement (1)

Dan Dwyer – LBNL Staff Scientist 29 Christian Dorfer – Exchange Undergraduate

LBNL LS Energy Response Measurement (2)

LBNL LS Energy Response Measurement (3)

View from above of complete system, at 40° scattering angle

LBNL LS Energy Response Measurement (4) In Real Life...

Target mounted in gamma turntable

LBNL LS Energy Response Results Scintillation Linearity

Metal-loaded LS for Neutrino Physics

From Minfang Yeh (BNL) Talk

https://p25ext.lanl.gov/seminar_files/Minfang_Yeh_040114.pdf

Doping for Reactor Neutrinos Experiments

- Daya Bay, Double-CHOOZ, RENO are doped with Gadolinium (Gd)
- Electron Anti-Neutrino detected by the inverse beta decay (IBD):

Illustration of IBD event

Doping for 0vßß experiments

- KamLAND (Reactor Neutrino) and SNO (Solar Neutrino) detectors have been repurposed to search for $0\nu\beta\beta$
 - KamLAND-ZEN (¹³⁶Xe)
 - SNO+ (¹³⁰Te)

KamLAND-Zen talk (Neutrino 2016)

36

Towards a Water-Based Liquid Scintillator

FUTURE

Water Cherenkov

What this talk is not about!

Water-based Liquid Scintillator

Cherenkov and Scintillation Detectors

From Minfang Yeh (BNL) Talk

https://p25ext.lanl.gov/seminar_files/Minfang_Yeh_040114.pdf

LBNL Daya Bay research on WbLS

- Group is hard at work on WbLS!
- Unfortunately most of the work is

