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Neutrino oscillations

Result of mismatch between 
mass and flavor eigenstates 

!

Mixing angles determine 
amplitude of oscillation 

∆m2 determines oscillation 
period in L/E space 

matter effect & δCP
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PMNS matrix structure (sij = sinθij, etc.) [1]

Calculation of oscillation/survival probability

electron (anti)neutrino survival probability [2]



Daya Bay Experiment

Discovery and precision 
measurement of nonzero θ13 

Reactor antineutrinos 

Large, isotropic flux 

Well-understood spectrum 

“Free” 

Note: Daya Bay deals only with 
electron antineutrinos, but I will 
still just use “ν” for simplicity
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Results (spoiler!)

First nonzero measurement of 
θ13 in 2012, now at sin22θ13 = 
0.084 ± 0.005 [2] 

Measurement of ∆m2
ee/13/23 

Measure reactor ν spectrum 

Sterile neutrino search
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L/E oscillation curve for 2015 measurement [2]

Reactor antineutrino absolute spectrum 
Note deviations between model and data [3]



Detectors

8 identically-designed 
antineutrino detectors (ADs) 

➀ Gd-doped LS target (LAB + 
bis-MSB + PPO) 

➁ LS and ➂ mineral oil in 
concentric layers 

Water pools for shielding and 
muon veto (not shown in figures 
here)
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Daya Bay AD schematic [4] and photograph [1]
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Event types

➀ inverse β decay (IBD) 

➁ muon 

➂ uncorrelated/accidental 

➃ flashers 

➄ 9Li β-n decay 

Events in italics are hard to 
distinguish from each other
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Artist’s (my) depiction of AD events

Measured spectrum of single AD flashes, 
a.k.a. half an accidental event [5]



ν selection

flasher cut 

muon vetoes (rejects muons and 
9Li) 

∆t for pair, τneutron ~ 30 µs 
(rejects accidentals) 

prompt and delayed energy 
(rejects accidentals) 

purity: ~98% IBDs
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Anatomy of a flasher event [5]

Proof from a Daya Bay paper that the selection is 
quite straightforward [5]



Spectral analysis

Predict far detector flux for each energy bin using near detector flux 
+ an oscillation model 

Subtleties 

Near detectors see some oscillation—over 2 different baselines 

Livetime/efficiency varies by detector due to muon and 
multiplicity vetoes 

Define χ2 to include the standard statistical errors plus nuisance 
parameters to account for systematic uncertainties
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Systematic uncertainties

Number of protons/target mass 

Relative energy scale 

Reactor flux (essentially cancels in near/far ratio) 

9Li 

Byproduct of cosmic µ’s 

Mimic IBD events ⟹ hard to measure rate 

Different rates for each detector hall (near/far)

9



Largest & purest ν data set
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2,000,000 IBD events 

~105 times more additional 
“singles” events (nuclear decays) 

There has to be more physics in 
this data set than mixing 
parameters, reactor spectrum 
and a sterile ν search!

IBD rate for each detector [5] 
Selection A/B are 2 different analyses



Things to look for

High-level 

νe disappearance ✔ 

sterile ν search ✔ 

Other unknown physics (surprises) 

Low-level 

Better understanding of backgrounds 

Other backgrounds not yet considered
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Explore the data

Use machine learning 

Find patterns without knowing exactly what to look for 

Group/sort data based on qualities humans may miss 

Learn from 103-106 examples (many more than humans can deal 
with)
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Neural networks

Series of matrix multiplies to 
make a prediction based on 
input vector 

Nonlinear function between 
matrices allows for more 
complex models 

Training is adjusting entries in 
matrix to give the desired 
“predictions” for given inputs
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nonlinearity

parameters

These pictures are from [6]



Convolutional NNs

Convolution: for images 

Want to recognize features no 
matter where they are 

Instead of one big matrix for the 
whole image, go one small patch 
at a time 

Layer’s output is a “feature 
map” showing locations of 
recognized features
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Training a NN

Gradient/steepest descent 

Define loss/cost to evaluate one 
NN input 

Repeat for many inputs to find 
total loss for model 

Take derivative w.r.t. each NN 
paramter and adjust in the 
opposite direction
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Interpretation of NN in/output

Input vector is some data 

An image (reshaped into a 
column vector) 

List of E, p, njet, etc. 

Output interpretation varies 

Supervised learning: i-th 
component as prediction 
that input is of type i 

Unsupervised: output is 
attempted reconstruction of 
input
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Unsupervised learning

Easy to train NN to predict 
classes if you know the answer 
for some inputs 

What if you don’t? 

Cannot train NN on class 
prediction 

Train NN to recover 
(“reconstruct”) input 

Interpret middle layer as 
encoding of input in 
“semantic space”
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convolutions deconvolutions



The bottleneck

Special layer whose output has 
small number of components 

Interpret as “encoding” of input 
as understood by first half of 
network 

Second half of network must 
start with encoding and recover 
original input 

Expect similar inputs to have 
similar encodings
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blue

swirls night
town

moonstars

encoding process

decoding process

bottleneck 
encoding



t-SNE evaluation

Examine encodings to look for patterns 

Expect similar style events to have similar encodings 

Use t-SNE algorithm to map N-dimensional encodings onto 2D plot 
[7] 

Nearby points in N dimensions become nearby points in 2D plot
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Progress on my project
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Computing resources

Cori and Edison supercomputers at NERSC 

Software frameworks: all in Python! 

Theano + Lasagne for NN 

Scikit-learn for t-SNE 

HDF5 + numpy for data storage and manipulation 

Collaborators: MANTISSA-HEP machine learning group @ LBNL 

Offering machine learning expertise to high energy physicists 

Performed a related analysis on Daya Bay data [8]
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Interpret PMTs as pixels

Unroll cylindrical detector into 
8 × 24 pixel map of PMT 
charges for each detector trigger 

Feed into NN to look for ways 
to distinguish IBDs from various 
backgrounds 

Write traditional analysis using 
insights from NN
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Study: IBD vs. accidentals

Accidentals are two uncorrelated signals that mimic an IBD event 

Background in Daya Bay: 1% of IBD sample is accidental 

Well-understood background allows for evaluation of NN 
methods 

Use autoencoder to analyze differences  
between IBDs and accidentals 

Input data 

pair up prompt and delayed images to make a 2-channel image 
similar to RGB in a photo 

9,000 IBD events, 9,000 accidental events
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Architecture

Use a basic architecture for first 
study 

Many opportunities for 
improvement 

Input 2 channels representing 
prompt and delayed 

8 × 24 pixels per channel 

Bottleneck width of 16 “pixels”
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image 
space

semantic 
space



Image reconstructions

Zeroth-order evaluation of 
training 

Qualitatively good 
reconstructions indicate the NN 
is learning how to encode the 
images 

Does not accurately reconstruct 
fluctuations in PMT charge 

Does reconstruct position and 
intensity of charge pattern
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Input

Reconstructed



t-SNE plot

5120 data points 

Each point represents the 
bottleneck encoding of one IBD 
or accidental event 

Nearby points on this plot have 
similar encodings 

Axes do not represent physical 
quantities 

Information is in the distance 
between data points
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t-SNE plot color-coded

Same 5120 data points 

Color represents which data set 
the point belongs to (IBD or 
accidental) 

NN was not given this 
information! 

Separation of red and blue 
indicates NN discovered 
different features for IBD and 
accidentals events
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What’s in store for the future

Continue analysis on current NN and t-SNE plot to uncover what 
NN learned & validate result 

Code up new, more sophisticated NNs for better chances of success 
with 9Li 

Determine signature of 9Li using NN (if such a signature exists) 

Write analysis taking advantage of this new knowledge

28



Thank you
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