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Backgrounds and Signal Discrimination

* Electron recoil (ER)
events have much
larger count rate
than nuclear recoil
(NR) events.

 Possible to
discriminate
between ER and NR.

* Neutron NR events
can mimic WIMP
signal.
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Blue events from ER calibration (133Ba) and Green
events from NR calibration (*>2Cf) in CDMS ZIP
detector. From [1]
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Understanding Neutron Backgrounds
In Experiments

* Neutron backgrounds can be very site,
detector, and environment specific.

* Can be difficult to measure accurately.

* Understanding comes from careful
consideration of:
— Theory (relevant sources, distributions, etc.)
— Simulation (commonly with GEANT and/or FLUKA)

— Measurements (rate counting)



Main Sources of Neutrons

* Low energy neutrons from (a, n) reactions and
spontaneous fission in surrounding rock and detector

components

* High energy neutrons from muon interactions in
surrounding rock and detector components



(a, n) reactions

° 238U, 235U, and 232Th
decay chains

produce a’s.
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* Different isotopes
have different
energy cutoffs for
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From: https://upload.wikimedia.org/wikipedia/
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(0, n) reactions
o 238U, 235U, and 232Th
decay chains
produce a’s.

* Different isotopes
have different
energy cutoffs for
(a, n) reactions
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(a, n) reactions

° 238U, 235U, and 232Th
decay chains
produce a’s.

* Different isotopes
have different
energy cutoffs for
(a, n) reactions
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Decay Chain Relevance to Neutron

Table 3.8 o-Emitters in the 238U and 232Th chains.
238J-chain 232Th-Chain
a-Emitter | Branching ratio | a-Energy | a-Emitter | Branching ratio | a-Energy
U-238 1 4.20 Th-232 1 4.01
U-234 1 4.78 Th-228 1 5.42
Th-230 1 4.69 Ra-224 1 5.69
Ra-226 1 4.78 Rn-220 1 6.29
Rn-222 1 5.49 Po-216 1 6.78
Po-218 1 6.00 Bi-212 0.3594 6.09
Po-214 1 7.69 Po-212 0.64 8.79
Po-210 1 5.30
From [2]
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CRESST Gran Sasso Neutron
Background Analysis (From [2])

 Experiment moved THE A, B AND C OF GRAN SASSO Gian Sass
from Hall A to Hall C EAEoritor oo bioiisen in 4o oting s |

between generations. .G S et fom coome rye
. by 1,400 metres of rock.
« Prompted detailed ST

neutron background CRESST
study.
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coast

liquid nitrogen
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copper shield
profolype defector Right: http://www.nature.com/polopoly fs/7.4565.1337781034!/image/gran-
sasso-graphic-on-page.jpg_gen/derivatives/landscape_630/gran-sasso-

graphic-on-page.jpg
m Left: https://www.mppmu.mpg.de/english/cresst_image4.gif
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CRESST Gran Sasso (a, n) Simulations

Table 3.9 Neutron yields from (a,n) interactions in hall A rock.

Element U-238 yield | Th-232 yield | Total elemental yield | % yield
(n/y/grock) | (n/y/grock) (n/y/grock)

O 7.80E-1 9.00E-2 8.8E-1 20.03
Si 5.00E-2 1.00E-2 6.00E-2 1.36
Al 3.00E-1 5.00E-2 3.50E-1 7.98
Mg 2.01E+0 3.00E-1 2.31E+0 52.66
K 7.00E-2 2.00E-2 9.00E-2 2.02
Ca 2.00E-1 5.00E-2 2.40E-1 5.54
C 4.00E-1 5.00E-2 4.60E-1 10.41

Total U-238 3.82E40

Total Th-232 5.60E-1

Total yield in Rock 4.38E4-0

e Background rates specific to rock found around Hall A at Gran Sasso
* Contribution levels off after ~1m of rock/concrete
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Spontaneous Fission

* Nucleus decays into two daughter nuclei and
2-3 neutrons.

* Possible in principle for our friends 233U, %3°U,
and 23?Th.

* |n practice, only appreciable contribution is
from 233U.



CRESST Gran Sasso Total Neutron Flux
Comparison

Table 3.14 Neutron flux in hall A and hall C.

Energy Neutron Flux (10~%n/cm?s)
(MeV) Hall A Hall C Measurement
(8% water in conc.) | (16% water in conc.) | (8% water in conc.) [Bel89)
1-2.5 0.35 0.18 0.27 0.38+0.01
2.5-5 0.18 0.12 0.15 0.27+0.14
5-10 0.05 0.03 0.03 0.05£0.01

e Careful simulations can reproduce experimental data
(measurement performed in hall A)

* Significance of water content to neutron flux raises
questions about annual modulation of signal seen by DAMA

— DAMA’s signal persists and not conclusively explained



Passive Shielding
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CDMS Stanford Underground Facility

Neutron Background Analysis
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Experiment (CDMS 1) conducted at much shallower depth.
Background analysis on neutrons originating from muon



Neutron production processes by
muons

Muon capture followed by neutron emission.
Falls off after 300 meter water equivalent

Direct muon spallation ejects neutron

i + Nucleus — u + Nucleus™ +n

Neutrons production by hadrons from muon-
generated nuclear showers

Neutrons produced by gammas in muon-
generated electromagnetic showers




Muon Interactions in Detector
Components
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* Passive shielding works on neutrons generated by muons external to the
detector (for the most part).

* Muons can generate neutrons inside detector by interacting with detector
components.
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Muon Interactions in Detector
Components

* Plot shows neutron E
flux resulting from
different muon
Interaction
processes (280 GeV
muons).

* Different detector
components have
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Active Veto Laver
|

~ Left: LUX
water shield.

* Modern experiments have From [6]

veto layers around
experiments.
— LUX used water with PMTs

that monitor for Cherenkov
radiation from muons.

— CDMS Il used plastic
scintillator for similar
purpose Right: CDMS _

* Veto layers can also detect L'Cf’r:f”t; or
some high energy (“punch- .o From eem——
through”) neutrons from (1] |

external muon interactions
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Additional Strategies

* Vetoing NR events with

multiple scatterings in the
detector

— WIMPs not likely to multiple
scatter in the detector

 Vetoing NR events with

accompanying ER events

— These are the result of
neutron deep inelastic
scattering

Cleaner and cleaner detector
materials

Number of events
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Simulation of neutron scattering
multiplicity in a generic liquid
xenon detector deep
underground. From [7]



LUX Neutron Backgrounds [8]

Neutron sources are previously discussed (a, n)
and spontaneous fission processes occurring in:

— PMTs

— Accumulation of 21°Pb daughters on detector surfaces
(negligible)

— Cryostats (30% of baseline PMT estimate)

Punch-through neutrons from muon interactions
in rock (30% of baseline PMT estimate)

Final estimate translates to 3x10* NR events per
day passing all cuts

NR events subdominant background



CDMS Il Neutron Background [1]

 Unvetoed muon-induced NR events for run
—0.214 + 0.0081(stat.) + 0.0086(syst.) for Ge detectors
— 0.129 + 0.0058(stat.) + 0.0033(syst.) for Si detectors

* Detector component-generated neutron events
for run also much less than 1.

* NR background entirely subdominant.



New Experiment — Nuclear Emulsion
(From [9])

Authors assume
passive screening
techniques for
externally generated
neutrons.

Detailed calculations,
simulations, and

activity measurements oz

to estimate intrinsic
neutron background
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