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Background:	h3ps://upload.wikimedia.org/wikipedia	



•  Electron	recoil	(ER)	
events	have	much	
larger	count	rate	
than	nuclear	recoil	
(NR)	events.	

•  Possible	to	
discriminate	
between	ER	and	NR.	

•  Neutron	NR	events	
can	mimic	WIMP	
signal.	

Backgrounds	and	Signal	DiscriminaPon	
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Blue	events	from	ER	calibraPon	(133Ba)	and	Green	
events	from	NR	calibraPon	(252Cf)	in	CDMS	ZIP	
detector.	From	[1]	



Understanding	Neutron	Backgrounds	
in	Experiments	

•  Neutron	backgrounds	can	be	very	site,	
detector,	and	environment	specific.	

•  Can	be	difficult	to	measure	accurately.	
•  Understanding	comes	from	careful	
consideraPon	of:	
– Theory	(relevant	sources,	distribuPons,	etc.)	
– SimulaPon	(commonly	with	GEANT	and/or	FLUKA)	
– Measurements	(rate	counPng)	
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Main	Sources	of	Neutrons	

•  Low	energy	neutrons	from	(α,	n)	reacPons	and	
spontaneous	fission	in	surrounding	rock	and	detector	
components	

•  High	energy	neutrons	from	muon	interacPons	in	
surrounding	rock	and	detector	components	
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(α,	n)	reacPons	

•  238U,	235U,	and	232Th	
decay	chains	
produce	α’s.	

•  Different	isotopes	
have	different	
energy	cutoffs	for	
(α,	n)	reacPons	
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238U:	
From:	h3ps://upload.wikimedia.org/wikipedia/	



(α,	n)	reacPons	

•  238U,	235U,	and	232Th	
decay	chains	
produce	α’s.	

•  Different	isotopes	
have	different	
energy	cutoffs	for	
(α,	n)	reacPons	
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235U:	
From:	h3ps://upload.wikimedia.org/wikipedia/	



(α,	n)	reacPons	

•  238U,	235U,	and	232Th	
decay	chains	
produce	α’s.	

•  Different	isotopes	
have	different	
energy	cutoffs	for	
(α,	n)	reacPons	
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232Th:	
From:	h3ps://upload.wikimedia.org/wikipedia/	



Decay	Chain	Relevance	to	Neutron	
Backgrounds	

From	[2]	
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CRESST	Gran	Sasso	Neutron	
Background	Analysis	(From	[2])		

•  Experiment	moved	
from	Hall	A	to	Hall	C	
between	generaPons.	

•  Prompted	detailed	
neutron	background	
study.	
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Right:	h3p://www.nature.com/polopoly_fs/7.4565.1337781034!/image/gran-
sasso-graphic-on-page.jpg_gen/derivaPves/landscape_630/gran-sasso-
graphic-on-page.jpg	
Lek:	h3ps://www.mppmu.mpg.de/english/cresst_image4.gif	



CRESST	Gran	Sasso	(α,	n)	SimulaPons	

•  Background	rates	specific	to	rock	found	around	Hall	A	at	Gran	Sasso	
•  ContribuPon	levels	off	aker	~1m	of	rock/concrete	
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Spontaneous	Fission	

•  Nucleus	decays	into	two	daughter	nuclei	and	
2-3	neutrons.	

•  Possible	in	principle	for	our	friends	238U,	235U,	
and	232Th.	

•  In	pracPce,	only	appreciable	contribuPon	is	
from	238U.	
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CRESST	Gran	Sasso	Total	Neutron	Flux	
Comparison	

•  Careful	simulaPons	can	reproduce	experimental	data	
(measurement	performed	in	hall	A)	

•  Significance	of	water	content	to	neutron	flux	raises	
quesPons	about	annual	modulaPon	of	signal	seen	by	DAMA	
–  DAMA’s	signal	persists	and	not	conclusively	explained	
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Passive	Shielding	

•  Usually	made	of:	
– Wax	
– Hydrocarbon		
(Polyethylene,	
scinPllator,	etc.)	

– Water	
•  A3enuates	neutron	
flux	from	external	
sources.	
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Effect	of	wax	shielding	around	early	CDMS	
experiment	at	Stanford	Underground	
Facility.	Lead	shield	designed	to	reduce	ϒ	
flux	in	detector.	From	[3]	



CDMS	Stanford	Underground	Facility	
Neutron	Background	Analysis		

•  Images	from	[4]	
•  Experiment	(CDMS	I)	conducted	at	much	shallower	depth.	
•  Background	analysis	on	neutrons	originaPng	from	muon	

interacPons.	
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Neutron	producPon	processes	by	
muons	

•  Muon	capture	followed	by	neutron	emission.	
Falls	off	aker	300	meter	water	equivalent	

•  Direct	muon	spallaPon	ejects	neutron	

•  Neutrons	producPon	by	hadrons	from	muon-
generated	nuclear	showers	

•  Neutrons	produced	by	gammas	in	muon-
generated	electromagnePc	showers	
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Muon	InteracPons	in	Detector	
Components	
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•  Passive	shielding	works	on	neutrons	generated	by	muons	external	to	the	
detector	(for	the	most	part).	

•  Muons	can	generate	neutrons	inside	detector	by	interacPng	with	detector	
components.	

Lead	shielding: 	 	 	 	 	 	Copper	Crysotat:			Plots	from	[3]	

	
	



Muon	InteracPons	in	Detector	
Components	

•  Plot	shows	neutron	
flux	resulPng	from	
different	muon	
interacPon	
processes	(280	GeV	
muons).	

•  Different	detector	
components	have	
different	
sensiPviPes.	
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From	[5]	



AcPve	Veto	Layer	
•  Modern	experiments	have	

veto	layers	around	
experiments.	
–  LUX	used	water	with	PMTs	
that	monitor	for	Cherenkov	
radiaPon	from	muons.	

–  CDMS	II	used	plasPc	
scinPllator	for	similar	
purpose	

•  Veto	layers	can	also	detect	
some	high	energy	(“punch-
through”)	neutrons	from	
external	muon	interacPons	
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Lek:	LUX	
water	shield.	
From	[6]	

Right:	CDMS	
II	plasPc	
scinPllator	
veto.	From	
[1]	



AddiPonal	Strategies	
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•  Vetoing	NR	events	with	
mulPple	sca3erings	in	the	
detector	
– WIMPs	not	likely	to	mulPple	
sca3er	in	the	detector	

•  Vetoing	NR	events	with	
accompanying	ER	events	
–  These	are	the	result	of	
neutron	deep	inelasPc	
sca3ering	

•  Cleaner	and	cleaner	detector	
materials	

SimulaPon	of	neutron	sca3ering	
mulPplicity	in	a	generic	liquid	
xenon	detector	deep	
underground.	From	[7]	



LUX	Neutron	Backgrounds	[8]	
•  Neutron	sources	are	previously	discussed	(α,	n)	
and	spontaneous	fission		processes	occurring	in:	
–  PMTs	
– AccumulaPon	of	210Pb	daughters	on	detector	surfaces	
(negligible)	

–  Cryostats	(30%	of	baseline	PMT	esPmate)	
•  Punch-through	neutrons	from	muon	interacPons	
in	rock	(30%	of	baseline	PMT	esPmate)	

•  Final	esPmate	translates	to	3x10-4	NR	events	per	
day	passing	all	cuts	

•  NR	events	subdominant	background	
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CDMS	II	Neutron	Background	[1]		

•  Unvetoed	muon-induced	NR	events	for	run	
– 0.214	±	0.0081(stat.)	±	0.0086(syst.)	for	Ge	detectors	
– 0.129	±	0.0058(stat.)	±	0.0033(syst.)	for	Si	detectors		

•  Detector	component-generated	neutron	events	
for	run	also	much	less	than	1.	

•  NR	background	enPrely	subdominant.	
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New	Experiment	–	Nuclear	Emulsion	
(From	[9])	

•  Authors	assume	
passive	screening	
techniques	for	
externally	generated	
neutrons.	

•  Detailed	calculaPons,	
simulaPons,	and	
acPvity	measurements	
to	esPmate	intrinsic	
neutron	background		
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