
Discrimination between 

Electron and Nuclear Recoils 

in Dark Matter Detectors
By: Vetri Velan

September 21, 2016

1



Dark Matter Direct Detection

• Basic principle of a DM search is to observe a dark matter 
particle (in this talk, WIMPs) interacting with a Standard Model 

particle

• Direct detection experiments search for recoils of a galactic 

WIMP with an atom
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Dark Matter Direct Detection

ER: e-, µ-, γ

NR: n, WIMP

These two processes often produce similar signals, so it is necessary 

to “discriminate” between the two to reduce backgrounds
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Energy deposits in material

 3 primary channels through which energetic particles deposit their energy 

in matter:

 Ionization (charge)

 Scintillation (light)

 Heat (phonons)

 Direct detection experiments attempt to detect 1 or 2 of these channels

 By detecting 2 channels, we are able to discriminate between nuclear 

recoils (NR) and electronic recoils (ER)
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Energy deposits in material5

Source: Ref. [1]



Two-phase liquid noble element 

time projection chambers
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Source: Ref. [2]

 Capable of measuring both scintillation light 

and ionization electrons

 Detectors consist of:

 A chamber of noble liquid (usually Xenon or 

Argon), with a gas phase region above the 

liquid

 Photon detectors (typically photomultiplier 

tubes) surrounding the liquid region

 An electric field (“drift field”) in the liquid, and 

a stronger “extraction field” in the gas

 At left: general schematic of interactions in 

LUX



Two-phase liquid noble element 

time projection chambers
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Source: Ref. [2]

 Primary scintillation light (S1) produced at the 

interaction site, detected by PMTs at the top 

and bottom of detector

 Ionization electrons drift up through the liquid 

xenon, in the drift field

 Some recombine with positive ions, releasing 

more scintillation light (S1)

 Others are extracted above the liquid surface, 

into gas phase region, where they form 

secondary proportional light (S2)

 Time between S1 and S2 gives us z-position of 

the recoil

 Pattern of S2 light on the PMTs gives us xy

Heat
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Two-phase liquid noble element 

time projection chambers
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Source: Ref. [2]

 Discrimination: the ratio of S2/S1 is different 

for electronic recoils and nuclear recoils

 Nuclear recoils have denser tracks, so they 

have more electron-ion recombination, and 

thus a lower S2/S1

 Crucially, this quantity is independent of 

particle ID—it depends on recoil type, 

energy, and detector properties

Heat
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Two-phase liquid noble element 

time projection chambers
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 How do we actually 

discriminate (i.e. given 

a recoil, tell whether it is 

NR or ER)?

 Answer: Calibration!

 Use known sources of 

β and γ radiation to 

calibrate ER, and 

sources of neutrons to 

calibrate NR

 At left: Calibration 

results from a Columbia 

detector (AmBe for n, 

Cs-137 for γ)

Heat

LightCharge

Source: Ref. [3]



Two-phase liquid noble element 

time projection chambers
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How is this used in an analysis?

Lux 2013:

 ER calibrated with tritiated

methane CH3T, a β source

 NR calibrated with AmBe and 

Cf-252, neutron sources

 Discrimination power of 99.6%

Heat

LightCharge

Source: Ref. [4]



Two-phase liquid noble element 

time projection chambers
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Lux 2013:

 WIMP search signal region, 
with 118 kg of fiducial mass 
and 85.3 live-day exposure

 Backgrounds include external 
γ, radio-isotopes in the 
detector, and neutrons

 Another background is 
leakage from ER events into 
the NR band—in this case, 
0.64 ± 0.16 events

 Use these background 
expectations and results in a 
profile-likelihood-ratio to set 
limits on DM interactions

Heat

LightCharge

Source: Ref. [4]



Two-phase liquid noble element 

time projection chambers
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 The themes that were presented for discrimination in dual-phase 

TPCs are going to be valid in other detection techniques as well

 Identify the channels of energy deposit; analyze the apportionment 

of energy into the different channels

 Use calibration to separate NR signals from ER signals

 Use this discrimination to reject ER backgrounds, which are usually 

much more common than NR backgrounds



Cryogenic bolometers with 

charge readout
13

Heat

LightCharge

 To see how heat and charge 

channels in cryogenic 

bolometers can be used 

simultaneously to discriminate, 

we’ll use CDMS-II as a case study

 The detector in CDMS-II is called 

a Z-Sensitive Ionization and 

Phonon (ZIP) detector (see left)

 Cryogenic crystal made of silicon 

or germanium

Source: Wikipedia



Cryogenic bolometers with 

charge readout
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 Ionization signal:

 Some portion of the recoil energy creates e-/h+ pairs in the crystal, which form a 

cascade of e-/h+ in the conduction band

 Drift in an electric field towards electrodes

 Phonon signal:

 Prompt phonons, generated from instantaneous displacement of nuclei and 

electrons

 Recombination phonons from charge carriers reaching the electrodes (see above)

 Luke phonons: energy dissipated in the crystal from the electric field doing work

 Phonons measured by transition-edge sensors (TES), >4000 in each ZIP, connected 

to SQUIDs



Cryogenic bolometers with 

charge readout
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 We expect ER to deposit more 

of their energy as ionization, 

compared to NR; this is exactly 

what we see

 Discriminating variable is 

ionization yield = EQ/ER

 EQ is the “electron-equivalent” 

ionization energy

 ER is the recoil energy

 ER calibration from 133Ba (bands 

are ±3σ), NR calibration from 
252Cf (bands are ±2σ)

Source: Ref. [5]



Cryogenic bolometers with 

charge readout
16

Heat

LightCharge

 Backgrounds are:

 Electron recoils in the 

bulk of the material, 

caused by radiogenic 

isotopes in the 

detector (see left), 

discriminated by 

ionization

 Neutrons from internal 

sources or from 

cosmic ray-induced 

spallation, reduced by 

going underground 

and muon veto shield

 (See next slide)

Source: Ref. [5]



Cryogenic bolometers with 

charge readout
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 Backgrounds are:

 ER at the edge of the 

detectors, 

discriminated by 

timing properties of 

the phonon signal 

(see left)

Source: Ref. [5]



Scintillating cryogenic bolometers18
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 Cryogenic Rare Event Search with 

Superconducting Thermometers 

(CRESST) is an example of a DM 

search that uses phonons and 

photons as signal channels

 As in other cryogenic bolometers, 

phonons propagate through crystal 

and are detected by TES

 CRESST uses scintillating CaWO4

crystals, in conjunction with a 

silicon/sapphire wafer and TES, to 

measure photon signal



Scintillating cryogenic bolometers19
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 Light yield: ratio of light to phonon 

signal


57Co for ER calibration (122 keV γ)

 NR calibration with neutron source

 Able to use quenching factors 

measured elsewhere, to determine 

NR bands for recoils of oxygen, 

tungsten, and calcium



We’ve finished all possible combinations of 

energy channels, so we’re done, right…?
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Pulse-Shape Discrimination

 Liquid noble elements scintillate by 

forming excimers E2
+ , which then de-

excite with a characteristic timescale

 Singlet and triplet states have different 

time constants

 Triplet decays are suppressed in 

nuclear recoils, due to Penning 

ionization and spin exchange

 So this is a valid approach for 

discrimination, using only one channel 

of energy deposit

 Xe:   𝜏1 = 4 𝑛𝑠, 𝜏3 = 22 𝑛𝑠

 Ar:    𝜏1 = 7 𝑛𝑠, 𝜏3 = 1600 𝑛𝑠
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Source: Ref. [8]



Methods of Pulse-Shape Discrimination

1. Prompt Fraction Method

 Define 𝑓𝑝 =
𝑇𝑖׬

𝜉
𝑉 𝑡 𝑑𝑡

׬
𝑇𝑖

𝑇𝑓
𝑉 𝑡 𝑑𝑡

 Use this as discrimination 

variable

 At left, results from a single-

phase LAr detector (3.14 L 

active volume).

 Here, 𝜉 = 90 𝑛𝑠 𝑇𝑖 = 𝑡0 − 50𝑛𝑠, 
𝑇𝑓 = 𝑡0 + 9000 𝑛𝑠, and 𝑡0 is the 

trigger time (empirically 

determined to give the best 

results).
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Methods of Pulse-Shape Discrimination

2. Multibin method

 Bin signal time and fraction of 

detected photoelectrons into     

K x L bins
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Methods of Pulse-Shape Discrimination

 For given experiment, multibin

method is better—there might 

be other algorithms

 Dark matter Experiment with 

liquid Argon and Pulse shape 

discrimination (DEAP-3600) 

aiming to use PSD in LAr, based 

on previous success in DEAP-1

25



Conclusions

 To reduce backgrounds (primarily from electrons and gamma rays), it is 

important to be able to discriminate between electron recoils and nuclear 

recoils in dark matter direct detection

 Noble liquid TPC’s and cryogenic bolometers have been successful at this 

by looking at the ratios between two energy channels

 Other forms of discrimination exist that only use one channel of energy 

deposit, such as pulse-shape discrimination and annual modulation
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Questions?
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