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Outline

● Solar neutrino introduction
– Where they come from
– Standard solar models

● The solar neutrino problem
– How it was identified and solved
– Detection and analysis methods in SNO
– Neutrino oscillations in vacuum and matter

● Solar neutrino physics
– What physics can solar neutrinos probe

● Current plans: SNO+
● Future Plans: Tʜᴇɪᴀ
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Solar Neutrino Overview

● Stars are powered by fusion reaction chains

● Fusion products are unstable, will decay

– β decays produce νe

● Neutrinos escape the star largely* unhindered

● Eventually arrive at Earth to be studied
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Proton-Proton Chain

https://en.wikipedia.org/wiki/Proton%E2%80%93proton_chain_reaction#/media/File:Proton_proton_cycle.svg (modified)

https://en.wikipedia.org/wiki/Proton%E2%80%93proton_chain_reaction#/media/File:Proton_proton_cycle.svg
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CNO Cycle

+ variations

https://en.wikipedia.org/wiki/CNO_cycle#/media/File:CNO_Cycle.svg (modified)

https://en.wikipedia.org/wiki/CNO_cycle#/media/File:CNO_Cycle.svg
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Standard Solar Models

● SSM spearheaded by John Bahcall

● Goal: predict internal structure of the sun

– Radial profile of neutrino production

– Rates of neutrino production (fusion reactions)
● Utilizes best available information

– Helioseismology, metallicity measurements

– Solar luminosity/mass/size

– Theory predictions (cross sections)
● Still, large theoretical uncertainties

– Neutrinos can probe directly for precision measurements
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SSM Neutrino Fluxes

J. Bahcall et al. (plot by B. Land)J. Bahcall et al.  http://www.kip.uni-heidelberg.de/tt_detektoren/neutrinos.php?lang=en
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● First measurement from 
Homestake experiment

● Large tank of tetrachloroethylene

– Neutrinos (νe specifically) capture on Cl

νe + 37Cl → 37Ar + e-

– Count the Ar → determine the flux

● Measured a flux about 
⅓ of SSM predictions

– The solar neutrino problem

– Confirmed by GALLEX, GNO, 
SAGE, (gallium); Kamiokande

Early Measurements

J. Bahcall et al.  http://www.kip.uni-heidelberg.de/tt_detektoren/neutrinos.php?lang=en

J. Bahcall
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Missing Neutrinos?

● Early experiments were only sensitive to νe

– Could a mechanism convert νe to νμ / ντ ?

● Herb Chen proposed using a heavy water target

– Deuterium has a large neutral current (NC) cross section

– Would be sensitive to all flavors of neutrinos
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Interactions in Heavy Water

● νe will undergo elastic scatter (ES) as usual

– Other flavors also ES but factor of ~6 less likely

– Detect Cherenkov light from scattered electron

https://physics.carleton.ca/sno/about-sno-project/neutrino-reactions
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Interactions in Heavy Water

● νe will undergo and charged current (CC)

– Deuterium has a sufficiently large CC cross section  

– Detect Cherenkov light from scattered electron

https://physics.carleton.ca/sno/about-sno-project/neutrino-reactions
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Interactions in Heavy Water

● All flavors undergo neutral current (NC) interactions

– Deuterium disassociated producing a free neutron

– Neutron captures producing gamma(s)

● Add a nucleus to capture neutrons
● Chlorine (from salt) works well

– Gamma(s) scatter producing 
energetic electrons

– Detect Cherenkov light from 
scattered electrons

https://physics.carleton.ca/sno/about-sno-project/neutrino-reactions
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The SNO Detector

● SNO realized H. Chen’s proposal

– 12m diameter acrylic vessel

– 1kT of heavy water, ultrapure water buffer

– Instrumented with ~9500 8” PMTs

– 2km underground in Sudbury, CA

● Primarily sensitive to 8B neutrinos 

The SNO Collaboration
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SNO Analysis

● Raw data is from photomultiplier tubes (PMTs)

– Photon strikes photocathode, liberated 
electron amplified, charge collected

– Hit time, integrated charge

● Reconstruction algorithms fit observables
from raw data event by event

– Energy from number of detected photons

– Image cherenkov ring for direction of event

– Position from minimizing hit time residuals

● Used a statistical fit to disentangle 
signal and background with observables

– Also used a metric of hit isotropy

The SNO Collaboration

http://natefinney.com/images_large/figure1.jpg
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SNO Analysis

● Monte-carlo predictions generated PDFs

– For signal and background classes

● Fit out number of NC, CC, ES events

– Disentangle contributions from νe,νμ,ντ

– Use livetime, cross sections to extract flux

B. Land
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SNO Results

● Sum agreed well with 
SSM predictions!

– Confirms that neutrinos 
do change forms

● Relative proportions 
require more explanation

The SNO Collaboration
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Neutrino (Vacuum) Oscillation

● Proposed method to explain neutrino mutation

● Mass basis rotated relative to flavor basis

– Requires that neutrinos have mass 

● The solar core is large relative to oscillation lengths

– Oscillations would be averaged out

– Easy to compute electron neutrino “survival probability”

● Vacuum oscillations are not the whole story!
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The Mikheyev–Smirnov–
Wolfenstein (MSW) Effect

● *Solar core densities are high 
enough to matter

● νe selectively experience CC

– Many e, virtually no τ or μ

– Gives a potential energy to νe 

● Coherent forward scatter

● c.f. refractive index of light

● Short version: initial νe exits as ν2 

– For high energy neutrinos (8B)

– MSW prediction matches SNO data well

– Agrees with many other measurements

B. Land
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The Mikheyev–Smirnov–
Wolfenstein (MSW) Effect

Plot by LBNE Collaboration
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Solar Neutrino Problem Solar Neutrino Problem 
====

Solved!Solved!

What else can we do?What else can we do?
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Solar Neutrino Physics

● Studying the solar core

– Neutrino rates are direct 
measure of fusion rates

– Different neutrinos produced 
in different regions

– Highly dependent on 
properties of the core

– Directly related to metalicity,
resolve tensions in other
measurement

● Constrain mixing angles, 
squared mass differences

– Primarily θ12 and Δm2
12

J. Bahcall et al. (plot by B. Land)
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Solar Neutrino Physics

● Neutrino lifetime

– Neutinos have mass, 
could decay

– Solar provides long baseline, 
constrained initial flux

– Probes beyond standard 
model physics

● Sterile neutrinos

– Would lack potential present 
for other flavors

– Solar densities uniquely sensitive to MSW-like resonances

B. Land
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Solar Neutrino Physics

● Fundamental symmetry violation

– Long baseline that 
rotates yearly (earth orbit)

– Perfect for looking for 
Lorentz violations

● Other beyond standard
model effects

– Look for distortions in 
energy spectrums

M. Maltoni  and A. Smirnov

J. Bernhard



10/19/2016 B. Land - 290E
24

Moving Forward: SNO+

● Upgrade of the SNO detector

● Replaces heavy water with 
liquid scintillator

– Linear alkylbenzene(LAB)+PPO

– Loses sensitivity to NC, CC

– Otherwise similar detection 
methods as SNO, just with 
isotropic scintillation

● Primarily a 0νββ experiment

– Starting with a water commissioning phase (filling now!)

– Followed by pure scintillator phase

● Potentially great for solar neutrinos (demonstrated by Borexino), other physics

– Finally loading 130Te into the scintillator for 0νββ

SNO+ Collaboration
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Scintillator Detection

Pros

● Greater light yield 

– ~500 hits/MeV vs ~10 hits/MeV

– Improved energy resolution

– Lower thresholds

– No cutoff for light production

● Demonstrated by Borexino

Cons

● Loses directionality

– Scintillation is inherently isotropic, 
no ring or similar directionality

– Cherenkov intensity lost in 
scintillation fluctuations

● Shorter scattering lengths

– Modifies hit time residuals, hinders 
reconstruction
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SNO+ Solar Neutrinos

● Monte-carlo predictions

– Similar analysis to SNO, 
without directionality

– Sensitivity to 8B, 7Be, pep, CNO

● Backgrounds are an issue

– Scintillator can be made ultra clean

– Acrylic vessel is comparatively dirty

– Effort underway to estimate impact

● Directionality would help

– Backgrounds should not change with solar direction

– Far easier to fit out solar neutrinos

SNO+ Collaboration
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The Future: Cherenkov+Scintillation

● Combination potentially has 
the best of both worlds

– Directional rejection 
of backgrounds

– High light yield → 
better energy 
resolution

● Make it BIG

– More interactions

– Better self-shielding of backgrounds

● Load it with something

– e.g. 7Li has a large CC cross section,
sharply peaked response

– Very precise spectral measurement 
possible 

B. Land

G.D. Orebi Gann

G.D. Orebi Gann
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The Future: Tʜᴇɪᴀ

● Proposed experiment to realize combined 
Cherenkov and Scintillation detection

● Uses water based liquid 
scintillator (WbLS)

– Developed by Minfang Yeh

– Scintillator suspended water

– Tune loading fraction of 
scintillator to tune scintillation 
light yield

● Broad physics program, and great for solar

B. Land

B. Land
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Tʜᴇɪᴀ MC Predictions

 30-kT WbLS Tʜᴇɪᴀ detector loaded with 1% 7Li

Tʜᴇɪᴀ Interest Group
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Questions?
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