Solar Neutrino Detection in SNO, SNO+, and Theia

Benjamin Land 290E / Oct 19, 2016

Outline

Solar neutrino introduction

- Where they come from
- Standard solar models

The solar neutrino problem

- How it was identified and solved
- Detection and analysis methods in SNO
- Neutrino oscillations in vacuum and matter

Solar neutrino physics

- What physics can solar neutrinos probe
- Current plans: SNO+
- Future Plans: THEIA

Solar Neutrino Overview

- Stars are powered by fusion reaction chains
- Fusion products are unstable, will decay
 - $\,\beta$ decays produce $\nu_{\rm e}$
- Neutrinos escape the star largely* unhindered
- Eventually arrive at Earth to be studied

Proton-Proton Chain

B. Land - 290E

https://en.wikipedia.org/wiki/Proton%E2%80%93proton chain reaction#/media/File:Proton proton cycle.svg (modified)

CNO Cycle

https://en.wikipedia.org/wiki/CNO_cycle#/media/File:CNO_Cycle.svg (modified)

Standard Solar Models

- SSM spearheaded by John Bahcall
- Goal: predict internal structure of the sun
 - Radial profile of neutrino production
 - Rates of neutrino production (fusion reactions)
- Utilizes best available information
 - Helioseismology, metallicity measurements
 - Solar luminosity/mass/size
 - Theory predictions (cross sections)
- Still, large theoretical uncertainties
 - Neutrinos can probe directly for precision measurements

SSM Neutrino Fluxes

J. Bahcall et al. http://www.kip.uni-heidelberg.de/tt_detektoren/neutrinos.php?lang=en

10/19/2016

Early Measurements

• First measurement from Homestake experiment

Large tank of tetrachloroethylene

– Neutrinos (v_e specifically) capture on Cl

 $v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^{-1}$

- Count the Ar \rightarrow determine the flux
- Measured a flux about ¹/₃ of SSM predictions
 - The solar neutrino problem
 - Confirmed by GALLEX, GNO, SAGE, (gallium); Kamiokande

J. Bahcall et al. http://www.kip.uni-heidelberg.de/tt_detektoren/neutrinos.php?lang=en

10/19/2016

Missing Neutrinos?

- Early experiments were only sensitive to $\nu_{\rm e}$
 - Could a mechanism convert v_e to v_{μ} / v_{τ} ?
- Herb Chen proposed using a heavy water target
 - Deuterium has a large neutral current (NC) cross section
 - Would be sensitive to all flavors of neutrinos

Interactions in Heavy Water

• v_e will undergo elastic scatter (ES) as usual

- Other flavors also ES but factor of ~6 less likely
- Detect Cherenkov light from scattered electron

https://physics.carleton.ca/sno/about-sno-project/neutrino-reactions

Interactions in Heavy Water

• v_e will undergo and charged current (CC)

- Deuterium has a sufficiently large CC cross section
- Detect Cherenkov light from scattered electron

https://physics.carleton.ca/sno/about-sno-project/neutrino-reactions

Interactions in Heavy Water

All flavors undergo neutral current (NC) interactions

- Deuterium disassociated producing a free neutron
- Neutron captures producing gamma(s)
 - Add a nucleus to capture neutrons
 - Chlorine (from salt) works well
- Gamma(s) scatter producing energetic electrons
- Detect Cherenkov light from scattered electrons

B. Land - 290E

https://physics.carleton.ca/sno/about-sno-project/neutrino-reactions

The SNO Detector

SNO realized H. Chen's proposal

- 12m diameter acrylic vessel
- 1kT of heavy water, ultrapure water buffer
- Instrumented with ~9500 8" PMTs
- 2km underground in Sudbury, CA
- Primarily sensitive to ⁸B neutrinos

The SNO Collaboration

SNO Analysis

Raw data is from photomultiplier tubes (PMTs)

- Photon strikes photocathode, liberated electron amplified, charge collected
- Hit time, integrated charge
- Reconstruction algorithms fit observables from raw data event by event
 - **Energy** from number of detected photons
 - Image cherenkov ring for **direction** of event
 - **Position** from minimizing hit time residuals
- Used a statistical fit to disentangle signal and background with observables
 - Also used a metric of hit isotropy

SNO Analysis

Monte-carlo predictions generated PDFs

For signal and background classes

Fit out number of NC, CC, ES events

- Disentangle contributions from v_e, v_μ, v_τ
- Use livetime, cross sections to extract flux

0.5

0.0

1.0

0.2

0.4

 $(r/r_{AV})^3$

0.2

0.4

 β_{14}

0.6

0.8

-1.0

-0.5

0.0

 $\cdots ES_{u\tau} - NC - BGS$

600

500

100

0.0

 $\cos[\theta_{\odot}]$

B. Land

0.6

d2o ($\chi^2/n_{\rm DF} = 14.53/21$)

SNO Results

- Sum agreed well with SSM predictions!
 - Confirms that neutrinos do change forms
- Relative proportions require more explanation

Neutrino (Vacuum) Oscillation

- Proposed method to explain neutrino mutation
- Mass basis rotated relative to flavor basis

$$\ket{
u_lpha} = \sum_i U^*_{lpha i} \ket{
u_i}$$

- Requires that neutrinos have mass
- The solar core is large relative to oscillation lengths
 - Oscillations would be averaged out
 - Easy to compute electron neutrino "survival probability"

$$\left|P_{lpha
ightarroweta}=\left|\langle
u_{eta}(t)|
u_{lpha}
ight
angle^{2}=\left|\sum_{i}U_{lpha i}^{*}U_{eta i}e^{-im_{i}^{2}L/2E}
ight|^{2}$$

Vacuum oscillations are not the whole story!

The Mikheyev-Smirnov-Wolfenstein (MSW) Effect

- *Solar core densities are high enough to matter
- v_e selectively experience CC
 - Many e, virtually no τ or μ
 - Gives a potential energy to v_e
 - Coherent forward scatter
 - c.f. refractive index of light

• Short version: initial v_e exits as v_2

For high energy neutrinos (⁸B)

10/19/2016

- MSW prediction matches SNO data well
- Agrees with many other measurements

The Mikheyev-Smirnov-Wolfenstein (MSW) Effect

10/19/2016

B. Land - 290E

19

Solar Neutrino Problem == Solved!

What else can we do?

Solar Neutrino Physics

Studying the solar core

- Neutrino rates are direct measure of fusion rates
- Different neutrinos produced in different regions
- Highly dependent on properties of the core
- Directly related to metalicity, resolve tensions in other measurement
- Constrain mixing angles, squared mass differences
 - Primarily θ_{12} and Δm_{12}^2

J. Bahcall et al. (plot by B. Land)

Solar Neutrino Physics

Neutrino lifetime

- Neutinos have mass, could decay
- Solar provides *long* baseline, constrained initial flux
- Probes beyond standard model physics
- Sterile neutrinos
 - Would lack potential present for other flavors
 - Solar densities uniquely sensitive to MSW-like resonances

Solar Neutrino Physics

Fundamental symmetry violation

- Long baseline that rotates yearly (earth orbit)
- Perfect for looking for Lorentz violations

- Other beyond standard model effects
 - Look for distortions in energy spectrums

10/19/2016

Moving Forward: SNO+

- Upgrade of the SNO detector
- Replaces heavy water with liquid scintillator
 - Linear alkylbenzene(LAB)+PPO
 - Loses sensitivity to NC, CC
 - Otherwise similar detection methods as SNO, just with isotropic scintillation

Primarily a 0vββ experiment

SNO+ Collaboration

- Starting with a water commissioning phase (filling now!)
- Followed by pure scintillator phase
 - Potentially great for solar neutrinos (demonstrated by Borexino), other physics
- Finally loading ¹³⁰Te into the scintillator for $0\nu\beta\beta$

Scintillator Detection

Pros

Greater light yield

- ~500 hits/MeV vs ~10 hits/MeV
- Improved energy resolution
- Lower thresholds
- No cutoff for light production
- Demonstrated by Borexino

Cons

Loses directionality

- Scintillation is inherently isotropic, no ring or similar directionality
- Cherenkov intensity lost in scintillation fluctuations

Shorter scattering lengths

Modifies hit time residuals, hinders reconstruction

SNO+ Solar Neutrinos

Monte-carlo predictions

- Similar analysis to SNO, without directionality
- Sensitivity to 8B, 7Be, pep, CNO

Backgrounds are an issue

- Scintillator can be made ultra clean
- Acrylic vessel is comparatively dirty
- Effort underway to estimate impact

Directionality would help

- Backgrounds should not change with solar direction
- Far easier to fit out solar neutrinos

The Future: Cherenkov+Scintillation

Combination potentially has the best of both worlds

- Directional rejection of backgrounds
- High light yield \rightarrow better energy resolution
- Make it BIG
 - More interactions
 - Better self-shielding of backgrounds _
- Load it with something
 - e.g. ⁷Li has a large CC cross section, sharply peaked response
 - Very precise spectral measurement possible

B. Land

10/19/2016

B. Land - 290E

Differential cross section (10⁻⁴⁶cm²)

The Future: Theia

- Proposed experiment to realize combined Cherenkov and Scintillation detection
- Uses water based liquid scintillator (WbLS)

- Developed by Minfang Yeh
- Scintillator suspended water
- Tune loading fraction of scintillator to tune scintillation light yield

Broad physics program, and great for solar

10/19/2016

THEIA MC Predictions

29

Questions?

References

- J. Bahcall Scientific American, Volume 221, Number 1, July 1969, pp. 28-37
- J. Bahcall ApJ, 621, L85 (2005), astro-ph/0412440
- B.T. Cleveland, et al. Astrophys.J. 496 (1998) 505-526
- The SNO Collaboration, Phys. Rev. C 88, 025501 (2013)
- G.D. Orebi Gann, arXiv:1504.02154v2 [nucl-ex]
- J.R. Alonso, et al., arXiv:1409.5864v3 [physics.ins-det]
- Theia Interest Group arXiv:1504.08284v1 [physics.ins-det]
- M. Yeh, et al., Nucl. Inst. & Meth. A 660 51 (2011)
- M. Maltoni and A. Smirnov, arXiv:1507.05287v3 [hep-ph]
- J. Bernhard, arXiv:1009.4717 [hep-ph]