# (Underground) Neutrino Physics

Gabriel Orebi Gann Yury Kolomensky

#### **Physics 290E**









- Fundamental particles
- Extremely abundant (10<sup>11</sup> V/cm<sup>2</sup>/s from the Sun @ Earth surface)



- Fundamental particles
- Extremely abundant (10<sup>11</sup> V/cm<sup>2</sup>/s from the Sun @ Earth surface)
- Tiny (unknown) mass



- Fundamental particles
- Extremely abundant (10<sup>11</sup> V/cm<sup>2</sup>/s from the Sun @ Earth surface)
- Tiny (unknown) mass
- 3 "flavors" defined by partner lepton



- Fundamental particles
- Extremely abundant (10<sup>11</sup> V/cm<sup>2</sup>/s from the Sun @ Earth surface)
- Tiny (unknown) mass
- 3 "flavors" defined by partner lepton
- Weakly interacting: very hard to detect!



- Fundamental particles
- Extremely abundant (10<sup>11</sup> V/cm<sup>2</sup>/s from the Sun @ Earth surface)
- Tiny (unknown) mass
- 3 "flavors" defined by partner lepton
- Weakly interacting: very hard to detect!
- But not dark matter



- Fundamental particles
- Extremely abundant (10<sup>11</sup> V/cm<sup>2</sup>/s from the Sun @ Earth surface)
- Tiny (unknown) mass
- 3 "flavors" defined by partner lepton
- Weakly interacting: very hard to detect!
- But not dark matter
- May hold keys to the question of matter-antimatter asymmetry in the universe



1930



Wolfgang Pauli

The continuous spectrum of β decay poses a problem...



1930



Wolfgang Pauli

• 1930:Wolfgang Pauli proposes a new particle

The continuous spectrum of β decay poses a problem...



1930



Abschrift

Physikalisches Institut der Eidg. Technischen Hochschule Zürich

Zirich, 4. Des. 1930 Cloriastrasse

Liebe Radioaktive Damen und Herren,

Wie der Ueberbringer dieser Zeilen, den ich huldvollst ansuhören bitte, Ihnen des näheren auseinandersetsen wird, bin ich angesichts der "falschen" Statistik der N- und Li-6 Kerne, sowie des kontinuierlichen beta-Spektrums auf einen versweifelten Ausweg verfallen um den "Wechselsats" (1) der Statistik und den Energiesats su retten. Mämlich die Möglichkeit, es könnten elektrisch neutrale Teilchen, die ich Neutronen nemmen will, in den Kernen existieren, welche den Spin 1/2 haben und das Ausschliessungsprinsip befolgen und



Kinetic Energy (MeV)

1930



Abschrift

Physikalisches Institut der Eidg. Technischen Hochschule Zürich

Zirich, 4. Des. 1930 Cloriastrasse

Liebe Radioaktive Damen und Herren,

Wie der Ueberbringer dieser Zeilen, den ich huldvollst ansuhören bitte, Ihnen des näheren auseinandersetsen wird, bin ich angesichts der "falschen" Statistik der N- und Li-6 Kerne, sowie des kontinuierlichen beta-Spektrums auf einen versweifelten Ausweg verfallen um den "Wechselsats" (1) der Statistik und den Energiesats su retten. Mämlich die Möglichkeit, es könnten elektrisch neutrale Teilchen, die ich Neutronen nemmen will, in den Kernen existieren, welche den Spin 1/2 haben und das Ausschliessungsprinsip befolgen und



Kinetic Energy (MeV)

IF  $n \to p + e^- + \bar{\nu}_e$ Then  $\bar{\nu}_e + p \to e^+ + n$ 

IF 
$$n \rightarrow p + e^{-} + \bar{\nu}_{e}$$
  
THEN  $\bar{\nu}_{e} + p \rightarrow e^{+} + n$   
Prompt annihilation  
signal





Double coincidence signal

- 1956: Reines and Cowan
- Anti-neutrinos detected at Savannah River nuclear reactor

1956



Fred Reines & Clyde Cowan







Quarks: Fermions (spin 1/2) Charged (+2/3, -1/3) Massive Colored



Quarks: Fermions (spin 1/2) Charged (+2/3, -1/3) Massive Colored

Massive Leptons: Fermions (spin 1/2) Charged (-1) Interact weakly / EM



Quarks: Fermions (spin 1/2) Charged (+2/3, -1/3) Massive Colored

Force carriers: Bosons (spin 0)

Massive Leptons: Fermions (spin 1/2) Charged (-1) Interact weakly / EM



Neutrino properties:

- I. Interact weakly
- 2. Massless
- 3. Three flavors





Neutrino properties:

- I. Interact weakly
- 2. Massless
- 3. Three flavours
  - V<sub>e</sub> The Sun, nuclear reactors
  - $v_{\mu}$  Cosmic rays, manmade

ν<sub>τ</sub> - Man-made beams First observation in 2000

#### Neutrino Masses

Relativistic kinematics:

$$\sum p_i^\mu = \sum p_f^\mu$$
 ;  $E^2 = p^2 + m^2$ 

Current best limits:

Measurements of the (physical) Electron Neutrino Mass  $\Rightarrow$  Tritium decay experiments  $\rightarrow He^3 + e^- + \overline{\nu}_e$ 



 $v_e$  : m<2.2 eV (Maintz, Troitsk)  $v_{\mu}$  : m<170 keV  $v_{\tau}$  : m<15.5 MeV (CLEO)

**Cosmological limits:** 

Σm < 0.3 eV (WMAP, 2dF, Planck)

9

#### Neutrino Detectors

• Problem: neutrino interaction cross section is *small* 

$$\sigma(\nu_{\ell}e^{-} \to \ell^{-}\nu_{e}) \approx \sigma(\nu_{\ell}n \to \ell^{-}p) \approx \sigma(\bar{\nu}_{\ell}p \to \ell^{+}n)$$

$$= \frac{G_F s}{\pi} = \frac{G_F}{\pi} 2m E_{\nu} \approx 10^{-41} \frac{E_{\nu}}{\text{GeV}} \text{cm}^2 = 10^{-17} \frac{E_{\nu}}{\text{GeV}} \text{barn}$$

The set of the set of

- □ E.g. for solar neutrinos (E<sub>v</sub>≈10 MeV), interaction cross section is 9.10<sup>-44</sup> cm<sup>2</sup> (9.10<sup>-20</sup> barn) !
- Mean free path in lead:  $1/(\sigma n) \sim 3 \times 10^{15} \text{ km} \sim 0.1 \text{ parsec}$
- Detection requires *large* detectors, *low* backgrounds
   <sup>CP</sup> Underground





Produced as weak (flavour) eigenstates  $(V_e, V_\mu, V_\tau)$ Propagate as physical (mass) eigenstates  $(V_1, V_2, V_3)$ 

simplified 2-neutrino scenario



Source: Wikipedia



Produced as weak (flavour) eigenstates  $(V_e, V_\mu, V_\tau)$ Propagate as physical (mass) eigenstates  $(V_1, V_2, V_3)$ 

simplified 2-neutrino scenario



Source: Wikipedia

#### Evidence For Neutrino Oscillations



#### Phys226

Neutrino Physics



Produced as weak (flavour) eigenstates  $(V_e, V_\mu, V_\tau)$ Propagate as physical (mass) eigenstates  $(V_1, V_2, V_3)$ 

simplified 2-neutrino scenario





















Produced as weak (flavour) eigenstates  $(V_e, V_\mu, V_\tau)$ Propagate as physical (mass) eigenstates  $(V_1, V_2, V_3)$ 



#### Quantum oscillations on a macroscopic scale!
### Terrestrial Measurements



### Terrestrial Measurements



Phys. Rev. Lett. 115 (2015) 111802

### Terrestrial Measurements



# How Does the Sun Shine?



- Nuclear fusion reactions in the core produce:
  - Helium
  - Energy (heat, light)
  - Neutrinos (v<sub>e</sub>)

# How Does the Sun Shine?



Look for these

- Nuclear fusion reactions in the core produce:
  - Helium
  - Energy (heat, light)
  - Neutrinos (v<sub>e</sub>)

#### Pioneers in Solar Neutrino Physics



#### ${}^{37}\text{Cl} + \nu_e \rightarrow {}^{37}\text{Ar} + e$

1968 First Solar Neutrino Experiment (Homestake)

Neutrino Physics

17

#### Homestake Ga Experiment

 $N_{2}$ 

 $N_2 + GeCl_4$ 

 $H_2O$ 



Gallium Experiment-Gallium Neutrino Observatory

### **Pioneer Solar Neutrino Experiments**



| Experiment           | Depth<br>(m.w.e.) | Target                                            | Reaction                                              | Threshold<br>(MeV) |
|----------------------|-------------------|---------------------------------------------------|-------------------------------------------------------|--------------------|
| Homestake            | 4900              | 615 tons of C <sub>2</sub> Cl <sub>4</sub>        | V <sub>e</sub> + <sup>37</sup> Cl→ <sup>37</sup> Ar+e | 0.814              |
| SAGE                 | 4700              | 60 tons metallic Ga                               | v <sub>e</sub> + <sup>71</sup> Ga→ <sup>71</sup> Ge+e | 0.233              |
| Gallex + GNO         | 3300              | 30.3 tons GaCl <sub>3</sub> -HCl                  | v <sub>e</sub> + <sup>71</sup> Ga→ <sup>71</sup> Ge+e | 0.233              |
| Kamiokande           | 2700              | 3 kt H₂O<br>680 t fiducial volume                 | $v_x$ +e $\rightarrow v_x$ +e                         | 7.5                |
| Super-<br>Kamiokande | 2700              | 55 kt H <sub>2</sub> O<br>22.5 kt fiducial volume | $v_x$ +e $\rightarrow v_x$ +e                         | 5.5                |

#### GALLEX (Gran Sasso, Italy)



SAGE (Baksan, Russia)



Homestake (S Dakota, USA)



Super-Kamiokande (Japan)

### Solar Neutrino Problem



### Solar Neutrino Problem



## 2002 Nobel Prize (1/2)

"for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos" "for pioneering contributions to astrophysics, which have led to the discovery of cosmic X-ray sources"

#### Kamiokande \_\_\_\_ series

# Homestake - 37Cl experiment





#### Raymond Davis Jr. Masatoshi Koshiba

1/4 of the prize

USA

1/4 of the prize

Japan

niversity of Tok

University of Pennsylvania Philadelphia, PA, USA University of Tokyo Tokyo, Japan



**Riccardo Giacconi** 

1/2 of the prize

USA

Associated Universities Inc. Washington, DC, USA

Neutrino Physics

Phys226

# Sudbury Neutrino Observatory





# Sudbury Neutrino Observatory







# Sudbury Neutrino Observatory

**2**m











### Solar Neutrino Problem







### Atmospheric Neutrinos: SuperK





Data/Prediction (null oscillation)

#### SuperK Results



Atmospheric neutrino data (SuperK) consistent with oscillations

27

### 2015 Nobel Prize in Physics

SuperK





Takaaki Kajita

Arthur B. McDonald

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

### KamLand



### KamLAND Results





All Oscillation Data

Phys226







MIXING

Parameters: 3 mixing angles 2 mass <u>differences</u> I phase



#### MIXING

$$U_{\rm PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{\rm CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{\rm CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times U_{\rm Maj}^{\rm diag}$$



MIXING

 $U_{\rm PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{\rm CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{\rm CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times U_{\rm Maj}^{\rm diag}$ Atmospheric well measured



MIXING

 $U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{\text{CP}}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{\text{CP}}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times U_{\text{Maj}}^{\text{diag}}$ Atmospheric well measured
Measured as of Mar 2012!



MIXING





# 2016 Breakthrough Prize in Fundamental Physics





<u>Kam-Biu Luk and the</u> Daya Bay Collaboration



<u>Yifang Wang and the</u> Daya Bay Collaboration



Yoichiro

Koichiro Nishikawa and the K2K and T2K Collaboration



Atsuto Suzuki and the KamLAND Collaboration



Arthur B. McDonald and the SNO Collaboration



<u>Takaaki Kajita and the</u> Super K Collaboration



Yoichiro Suzuki and the Super K Collaboration

#### **Mysterious** Neutrinos

а

b

С

to

**" of** 



#### H.Murayama



**Standard Model** masses





Photo: Pnicolet via Wikimedia Commons François Englert

Wikimedia Commons Peter W. Higgs



#### 08/31/2016

290E: Neutrinos

#### **Mysterious** Neutrinos

а

to

**" of** 

b

С

#### H.Murayama



**Standard Model** masses





Photo: Pnicolet via Wikimedia Commons François Englert

Photo: G-M Greuel via Wikimedia Commons Peter W. Higgs

#### light Dirac neutrino

 $\leftarrow$  the anomalous v mass scale

#### 08/31/2016

34
### **Mysterious** Neutrinos

а

to

**" of** 



#### H.Murayama



**Standard Model** masses





Photo: Pnicolet via Wikimedia Commons Francois Englert

Wikimedia Commons Peter W. Higgs

light Dirac neutrino

Left-Handed Majorana neutrino + see-saw mechanism



 $\leftarrow$  the anomalous v mass scale

С

### **Mysterious** Neutrinos

а

to

**" of** 



H.Murayama



**Standard Model** masses





Photo: Pnicolet via Wikimedia Commons Francois Englert

Wikimedia Commons Peter W. Higgs

light Dirac neutrino Left-Handed Majorana neutrino + see-saw mechanism



 $\leftarrow$  the anomalous v mass scale

## Key Questions

- Is neutrino its own antiparticle ?
  - □ Is Lepton Number conserved ?
- How light is it ?
  - Direct measurements, astrophysical constraints, neutrinoless double-beta decay
- How are the masses arranged (hierarchy)
  - Long-baseline oscillation measurements, also reactor, atmospheric neutrino experiments and cosmology
- Is there a neutrino-antineutrino asymmetry ?

These questions define research directions in neutrino physics for the next two decades

# Key Questions

- Is neutrino its own antiparticle ?
  Is Lepton Number conserved ?
- How light is it ?





- Direct measurements, astrophysical constraints, neutrinoless double-beta decay
- How are the masses arranged (hierarchy)
  - Long-baseline oscillation measurements, also reactor, atmospheric neutrino experiments and cosmology
- Is there a neutrino-antineutrino asymmetry ?

These questions define research directions in neutrino physics for the next two decades



Thanks to J. Conrad, L. Winslow, G.D. Orebi Gann



Thanks to J. Conrad, L. Winslow, G.D. Orebi Gann

## An Aside: Helicity

• Orientation of spin relative to momentum



• If a particle has mass, can always boost to a frame in which helicity flips





Thanks to J. Conrad, L. Winslow, G.D. Orebi Gann

## An Aside: Helicity

• Orientation of spin relative to momentum



• If a particle has mass, can always boost to a frame in which helicity flips





Thanks to J. Conrad, L. Winslow, G.D. Orebi Gann

## An Aside: Helicity

• Orientation of spin relative to momentum



• If a particle has mass, can always boost to a frame in which helicity flips



• Discovery of non-zero neutrino mass  $\Rightarrow$  can have a RH V (or LH  $\overline{V}$ )

Thanks to J. Conrad, L. Winslow, G.D. Orebi Gann

## Lepton Number

- Neutrino: only known fermion with 0 charge; could be its own antiparticle
  - But experimentally, v and v behave differently
     <sup>37</sup>Cl + ve ⇒ <sup>37</sup>Ar + e<sup>-</sup> (Ray Davis @
    - Savanna River)
- Define  $V_e$  and  $\overline{V}_e$  by interaction with charged leptons (e<sup>±</sup>)
- Introduce a conserved 'charge'
   ⇒ lepton number





- Neutrino: only known fermion with 0 charge; could be its own antiparticle
  - □ But experimentally, v and v behave differently
  - Also, v<sub>LH</sub> and v<sub>RH</sub> behave differently
     Weak interactions violate parity

<sup>CP</sup> Are these phenomena related ?



Dirac:

- Neutrino: only known fermion with 0 charge; could be its own antiparticle
  - □ But experimentally, v and v behave differently
  - Also,  $v_{LH}$  and  $v_{RH}$  behave differently
    - The Weak interactions violate parity

<sup>C</sup> Are these phenomena related ?





- Neutrino: only known fermion with 0 charge; could be its own antiparticle
  - □ But experimentally, v and v behave differently
  - Also,  $v_{LH}$  and  $v_{RH}$  behave differently
    - <sup>CP</sup>Weak interactions violate parity

<sup>(3)</sup> Are these phenomena related ?

Majorana: different helicity states





W.Haxton



- Understand how neutrinos acquire mass is of fundamental importance
- Dirac
- Requires new fundamental global symmetry U(1)<sub>lepton number</sub>
  - S New physics ?
  - Matter and antimatter are fundamentally different

- Majorana
- Cannot be explained by "standard" Higgs Yukawa coupling
  - <sup>CP</sup> New physics ?
  - Potentially sensitive to very high mass scales
  - Can generate matter⇔antimatter transitions

#### Neutrinoless Double-Beta Decay



290E: Neutrinos

40

#### Neutrinoless Double-Beta Decay



290E: Neutrinos

#### Neutrinoless Double-Beta Decay



- Observation of  $0\nu\beta\beta$  would mean
  - Lepton number violation
  - Neutrinos are Majorana particles
  - Rate measures (effective) electron neutrino mass

$$m_{\beta\beta} = |\sum_{i} m_{i} \cdot U_{ie}^{2}|$$

08/31/2016

 $|M_{nucl}|^2 |m_{\beta\beta}|^2$ 



## $0\nu\beta\beta$ Rate and Neutrino Mass



 $\tau^{0\nu} \sim 10^{24} - 10^{26}$  years: large mass and extremely low backgrounds needed (underground labs, ultra purity materials, active rejection of backgrounds)



Experimental challenge:

✓ Increase *Mass* (200-1000 kg for current experiments): \$\$, R&D

✓ Increase *Isotopic Abundance*: \$\$

✓ Decrease *Bkg* (ultimately to  $2\nu\beta\beta$  limit): radiopurity, active rejection

✓ Decrease  $\Delta E$ : technology choice

## $O_{V\beta\beta}$ Isotopes: Figure of Merit

 $F = G_F^2 \Phi(Q,Z) |M_{0v}|^2 m_e^2 [y^{-1}] \qquad (Want as high as possible)$ 



08/31/2016

45

## $O_{\nu\beta\beta}$ Isotopes: Figure of Merit

 $F = G_F^2 \Phi(Q,Z) |M_{0_V}|^2 m_e^2 [y^{-1}] \qquad (Want as high as possible)$ 



## **Detection Techniques**

Source external to detector (NEMO, SuperNEMO)



#### 290E: Neutrinos

## Diverse, Vibrant Program



## Diverse, Vibrant Program





1980 - 2007

J.F. Wilkerson

08/31/2016



1980 - 2007

J.F. Wilkerson

08/31/2016



#### 1980 - 2007

2007 - 2017

2015 - 2025

J.F. Wilkerson

08/31/2016

## International 0νββ Program



08/31/2016

48



08/31/2016





