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Why we want the ground state of LGTs
2

|Ω⟩

As an initial state 
• Single-particle excitations 
• Quench

Vacuum properties 
• Phase diagram 
• Correlation length

Dependency on constraints 
• Response to static probe charges 
• Boundary, topology, ...

Spectrum 
• If excited states are buildable



Quantum subspace diagonalization
Idea: 

Reduce the dimension of Hamiltonian 
↓ 

Classically diagonalize 

• Hamiltonian projected onto subspace 
containing the ground state 

• Quantum used to identify the subspace 
• Several approaches 

(sample-based, Krylov, sample-based Krylov)

3

Robledo-Moreno et al., Sci. Adv. 11, eadu9991 (2025)     18 June 2025

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 14

C H E M I S T R Y

Chemistry beyond the scale of exact diagonalization on 
a quantum- centric supercomputer
Javier Robledo- Moreno1*, Mario Motta1*, Holger Haas1, Ali Javadi- Abhari1, Petar Jurcevic1, 
William Kirby2, Simon Martiel3, Kunal Sharma1, Sandeep Sharma4, Tomonori Shirakawa5,6,7, 
Iskandar Sitdikov1, Rong- Yang Sun5,6,7, Kevin J. Sung1, Maika Takita1, Minh C. Tran2,  
Seiji Yunoki5,6,7,8, Antonio Mezzacapo1*

A universal quantum computer can simulate diverse quantum systems, with electronic structure for chemistry 
o!ering challenging problems for practical use cases around the hundred- qubit mark. Although current quantum 
processors have reached this size, deep circuits and a large number of measurements lead to prohibitive runtimes 
for quantum computers in isolation. Here, we demonstrate the use of classical distributed computing to o"oad all 
but an intrinsically quantum component of a work#ow for electronic structure simulations. Using a Heron super-
conducting processor and the supercomputer Fugaku, we simulate the ground- state dissociation of N2 and the 
ground state properties of [2Fe- 2S] and [4Fe- 4S] clusters, with circuits up to 77 qubits and 10,570 gates. The 
proposed algorithm processes quantum samples to produce upper bounds for the ground- state energy and 
sparse approximations to the ground- state wave functions. Our results suggest that, for current error rates, a 
quantum- centric supercomputing architecture can tackle challenging chemistry problems beyond sizes amena-
ble to exact diagonalization.

INTRODUCTION
!e most common task in theoretical quantum chemistry is the 
computation of ground- state energies by solving the Schrödinger 
equation H ∣Ψ⟩ = E ∣Ψ⟩ in the Born- Oppenheimer approxima-
tion. Exact numerical solutions in a "nite basis set have a cost 
growing combinatorially in the number of electrons and orbitals. 
This limits exact diagonalization in the full configuration inter-
action (FCI) to system sizes close to 22 electrons in 22 orbitals 
(22e,22o) (1) and (26e,23o) (2). For system sizes beyond the reach 
of FCI, one must rely on approximate methods, e.g., diagram-
matic techniques, wave function ansatzes, and Monte Carlo inte-
gration (3, 4).

Progress in quantum computing has triggered a $urry of theo-
retical proposals for computational chemistry over the past decade 
[e.g., (5–7)]. At the same time, attempts have been made at imple-
mentations on prefault- tolerant quantum processors (8–14), but these 
have so far been limited to small systems for two main reasons. 
First, despite numerous e%orts to improve on the measurement 
problem [e.g., (15–17)], runtime for energy expectation value esti-
mation on interesting systems remains out of any reasonable times-
cale. Second, the depths of chemically motivated quantum circuits 
for computations of chemistry are very high. For unitary coupled 
cluster (18) and a single step of time evolution, these quantities scale 
as M4 (19) on a system with M spin- orbitals. Although this scaling 

can be improved with various techniques (20), on prefault- tolerant 
devices, the signal emerging from circuits of such size is weakened 
by the accumulation of gate errors and qubit decoherence.

Here, we show that a quantum- centric supercomputing archi-
tecture and work$ow—which we call sample- based quantum diago-
nalization (SQD)—allow us to tackle realistic electronic structure 
problems on system sizes beyond the reach of exact diagonalization on 
prefault- tolerant quantum processors. We conduct quantum experi-
ments to study the ground- state properties of the N2 molecule and the 
[2Fe- 2S] and [4Fe- 4S] clusters using 58, 45, and 77 qubits, respectively, 
and a maximum number of 3.5 K two- qubit gates.

!e manuscript is structured as follows. In the Results section, we 
provide a brief description of the problem statement, the concerted 
quantum- classical work$ow, and the con"guration recovery tech-
nique, as well as the quantum circuits run in the experiments. !is 
section ends with the presentation of the experiment results on the 
ground- state properties of the N2 molecule in a correlation- consistent 
basis set and the active spaces of the [2Fe- 2S] and [4Fe- 4S] clusters. 
!e Discussion section summarizes our "ndings and examines some 
conditions for the advantage with SQD or variations thereof. !e Ma-
terials and Methods section provides detailed explanations on the 
subspace projection and diagonalization and approximate total spin 
symmetry restoration, the con"guration recovery technique, and ex-
perimental details including the construction of the quantum circuits 
and the mapping into quantum processors.

RESULTS
We set up the discussion of our results by considering the quantum- 
centric supercomputing architecture (21) schematized in Fig. 1. !e 
architecture enables scaling of computational capacity by leveraging 
quantum processors for their natural task: executing a limited num-
ber of large quantum circuits. We follow the work$ow in Fig. 1 to 
summarize our methods.
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Krylov diagonalization of large many-body
Hamiltonians on a quantum processor

Nobuyuki Yoshioka 1,2,10 , Mirko Amico 3,10 , William Kirby 3,10 ,
Petar Jurcevic 3, Arkopal Dutt4, Bryce Fuller 3, Shelly Garion5, Holger Haas3,
Ikko Hamamura 6,7, Alexander Ivrii 5, Ritajit Majumdar8, Zlatko Minev 3,
Mario Motta3, Bibek Pokharel 9, Pedro Rivero3, Kunal Sharma 3,
Christopher J. Wood 3, Ali Javadi-Abhari3 & Antonio Mezzacapo3

The estimation of low energies of many-body systems is a cornerstone of the
computational quantumsciences. Variational quantumalgorithms canbeused
to prepare ground states on pre-fault-tolerant quantum processors, but their
lack of convergence guarantees and impractical number of cost function
estimations prevent systematic scaling of experiments to large systems.
Alternatives to variational approaches are needed for large-scale experiments
on pre-fault-tolerant devices. Here, we use a superconducting quantum pro-
cessor to compute eigenenergies of quantum many-body systems on two-
dimensional lattices of up to 56 sites, using the Krylov quantum diagonaliza-
tion algorithm, an analog of the well-known classical diagonalization techni-
que. We construct subspaces of the many-body Hilbert space using
Trotterized unitary evolutions executed on the quantum processor, and
classically diagonalize many-body interacting Hamiltonians within those sub-
spaces. These experiments demonstrate exponential convergence towards an
estimate of the ground state energy, and show that quantum diagonalization
algorithms are poised to complement their classical counterparts at the
foundation of computational methods for quantum systems.

Solving the Schrödinger equation for quantum many-body sys-
tems is at the core of many computational algorithms in fields
such as condensed matter physics, quantum chemistry, and high-
energy physics. A quantum advantage for this task would have
far-reaching consequences for natural sciences. Among approa-
ches to using quantum computers for eigenstate calculations, two
have been the primary objects of discussion to date: quantum
phase estimation (QPE)1,2, including its recent advancements (e.g.,
refs. 3–5), and the variational quantum eigensolver (VQE)6.

Experimental implementations on pre-fault-tolerant devices have
focused on VQE, which has been demonstrated on various
experimental platforms for a wide range of problems (e.g.,
refs. 6–9). However, the bottleneck of parametric optimization
has so far prevented its scaling beyond small instances. QPE, on
the other hand, possesses theoretical precision guarantees, but
quantum error correction will be necessary to reach the circuit
depths required for problems of value, although small examples
have been implemented10–12.
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Implicit Solvent Sample-Based Quantum Diagonalization
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ABSTRACT: The sample-based quantum diagonalization (SQD)
method shows great promise in quantum-centric simulations of
ground state energies in molecular systems. Inclusion of solute−
solvent interactions in simulations of electronic structure is critical
for biochemical and medical applications. However, all of the
previous applications of the SQD method were shown for gas-phase
simulations of the electronic structure. The present work aims to
bridge this gap by introducing the integral equation formalism
polarizable continuum model (IEF-PCM) of solvent into the SQD
calculations. We perform SQD/cc-pVDZ IEF-PCM simulations of
methanol, methylamine, ethanol, and water in aqueous solution
using quantum hardware and compare our results to CASCI/cc-
pVDZ IEF-PCM simulations. Our simulations on ibm_cleveland, ibm_kyiv, and ibm_marrakesh quantum devices are performed
with 27, 30, 41, and 52 qubits demonstrating the scalability of SQD IEF-PCM simulations.

1. INTRODUCTION
Solvation eHects are pivotal for a wide range of applications,
including drug design,1−3 protein design4−7 and catalysis,8−10

as they influence reaction mechanisms and molecular proper-
ties.11−13 However, the accurate modeling of solvated chemical
systems remains one of the most critical challenges in
computational chemistry. These eHects arise from complex
solute−solvent interactions, encompassing electrostatics, dis-
persion, hydrogen bonding, and polarization, which makes the
problem inherently many-body in nature.14−19

Solvation is traditionally addressed using explicit or implicit
models.20,21 Explicit models simulate individual solvent
molecules, capturing detailed solute−solvent interactions, but
they require extensive sampling due to the many degrees of
freedom involved.22−24 Implicit models, such as the polarizable
continuum model (PCM) and its advanced formulations like
IEF-PCM, approximate the solvent as a continuous dielectric
medium, reducing computational cost while capturing
dominant electrostatic interactions.14−19,25,26 Despite these
advances, integrating implicit solvation models with high-
accuracy quantum chemistry methods, such as coupled cluster
(CC) theory27−29 and complete active space configuration
interaction (CASCI),30−32 which provide systematically
improvable treatments of electronic correlation, remains
computationally demanding for systems containing tens to
hundreds of atoms. The computational costs of these methods
scale steeply with system size.

Quantum computing oHers a transformative approach to
overcome these limitations. Unlike classical systems, which
encode information as bits, quantum computers leverage
qubits that can exist in superpositions of states, enabling
e,cient representation and manipulation of complex quantum
systems. Quantum algorithms, including the variational
quantum eigensolver (VQE),33−36 quantum phase estimation
(QPE),37−39 and sample-based quantum diagonalization
(SQD),40−43 have been developed to solve the electronic
Schrödinger equation. These methods promise to achieve
chemical accuracy for increasingly complex systems as
quantum hardware matures.
Recent research has demonstrated the feasibility of

integrating quantum computing with diHerent solvent models.
For example, the use of VQE combined with IEF-PCM44 and
the polarizable embedded framework45 has yielded promising
results (on classical simulators of quantum circuits) in
calculating total energies for small molecules in solution,
achieving accuracies comparable to high-level classical
methods. However, despite these advances in solvation
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Sample-based diagonalization

Steps 
• Prepare an approximate ground state 

(via variational method etc.) 
• Sample the state 
• Configuration recovery 
• Projection & diagonalization

4

If ( ) = Ẽ0then

where Ẽ0 ≳ E0
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Our main goal is to !nd the ground state of chemistry Hamiltonians

expanded over a discrete basis set. Here, we have de!ned the fermi-
onic creation/annihilation operator â†pσ ∕ âpσ associated to the p- th 
basis set element and the spin σ , whereas hpr and 

(
pr∣qs

)
 are the one-  

and two- body electronic integrals, obtained from standard chemis-
try so"ware (22). #roughout this manuscript, we use molecular 
orbitals as basis set elements. We map the degrees of freedom of 
Eq. 1 to qubits with a Jordan- Wigner (JW) transformation (23). We 
then construct a quantum circuit to be executed on quantum hard-
ware, preparing a state ∣Ψ⟩ on M qubits, which represents a molecu-
lar wave function on M molecular spin- orbitals. In the JW mapping, 
the single- qubit basis states ∣0⟩∕∣1⟩ represent empty/occupied spin- 
orbitals. #ese mapping and optimization steps are performed on 
classical nodes (see Fig. 1). We execute the circuit on a quantum com-
puter and measure ∣Ψ⟩ in the computational basis. Repeating this 
produces a set of measurement outcomes

in the form of bitstrings x ∈ {0, 1}M distributed according to some 
P̃Ψ ; the bitstrings represent electronic con!gurations, also referred 
to as Slater determinants (SDs).

Con!guration recovery
On a prefault- tolerant quantum computer, the action of noise alters 
the distribution from its ideal form PΨ = ∣⟨x∣Ψ⟩∣2 to some other 
P̃Ψ , which generates the noisy set of con!gurations ̃ , accessible to 
us via quantum measurement. Noise in the quantum system broad-
ens the distribution PΨ over con!gurations that do not contribute to 
low- energy states, so- called deadwood (24). As a result, only a frac-
tion of ̃ contains a meaningful quantum signal. To improve this 
scenario, we introduce a self- consistent con!guration recovery tech-
nique, which allows a probabilistic partial recovery of noiseless con-
!guration samples from ̃.

#e con!guration recovery scheme is inspired by the structure of 
chemistry problems. #e Hamiltonian in Eq. 1 conserves the num-
ber of particles separately for each spin species. #e recovery routine 
targets con!gurations x that have the wrong particle number Nx ≠ N 
due to the accumulation of errors in the execution of the quantum 
circuit.

Repeated rounds of recovery can be carried out self- consistently. 
#e !rst step of each recovery round is to iterate through the set ̃ and !nd con!gurations x with Nx ≠ N particles. If Nx > N (or 
Nx < N ), ∣Nx − N ∣ bits are sampled to be %ipped from the set of oc-
cupied (or empty) spin- orbitals, according to a distribution propor-
tional to a monotonically increasing function (see Materials and 
Methods section for further information) of ∣xpσ − npσ∣ , the dis-
tance from the current value of the bit to the average occupancy of 
the spin- orbital pσ , obtained from the previous recovery round. 
#is generates a new set of recovered con!gurations R.

Following the next step of Fig. 1, we build K  batches of d con-
!gurations  (1) … , (K) using samples from the set R , according 

Ĥ =
∑

pr

σ

hpr â†pσârσ +
∑

prqs

στ

(
pr ∣qs

)

2
â†pσâ

†
qτâsτârσ

(1)

̃ = {x∣x ∼ P̃Ψ(x)} (2)

Fig. 1. Quantum- centric supercomputing architecture and SQD work"ow diagram. (Left) We illustrate a simpli!ed architecture used to execute our work"ow. The 
architecture has a cluster with a quantum system alongside classical runtime nodes within an isolated environment. A workload management system controls hybrid 
quantum- classical jobs through middleware. Our work"ow is distributed on a set of classical nodes. It includes standard quantum chemistry application routines such as 
computing electronic integrals, mapping to qubits, and preparing circuits to be executed. (Right) Details of the classical postprocessing step. The input is a set of noisy 
samples ̃ from the quantum execution that are processed with our con!guration recovery step, using information from a vector n of reference orbital occupancies. The 
green inset shows an example where a con!guration with Nx < N is corrected. The set of recovered con!gurations R is subsampled and distributed for projection and 
diagonalization on parallel classical nodes. A new average reference occupancy vector n is computed from the results, and the con!guration recovery loop is repeated 
self- consistently until convergence.
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Sample-based Krylov diagonalization
Given a state  s.t. , 

 

where  for some .

|ψ0⟩ ⟨Ω |ψ0⟩ ≠ 0
|Ω⟩ ∈ lim

D→∞
span{Un|ψ0⟩}D

n=0

U = e−iHΔt Δt

5

Krylov space

Sample from all Krylov basis states 
→ Ground state should be in the subspace 

Advantage: 
• Initial state can be simple 
• Only need time evolution circuits



The system: 2D triangular pure  LGTℤ2
6

H = − ∑
e∈ℰ

Z(e) − λ ∑
p∈𝒫

∏
e∈∂p

X(e) = HE + HM

Gn|ψ⟩ = gn|ψ⟩ (gn = ± 1)

Gn = ∏
e∈∂vn

Z(e)

X
X

X Z Z
Z

Z Z
Z

Z

Gauss's law:

edges plaquettes

• Pure Z2 →  are static charges 
• There can only be even number of -1s 

• Edges are the only dynamic d.o.f. 
• -dim Hilbert space 

(with gauge redundancy)

gn

2|ℰ|



Dual: Hexagonal Ising model

• Gauss's law is solved at the Hamiltonian level 
→ No gauge redundancy 

• Plaquettes (→ Ising spins) are the dynamical d.o.f. 
Basis: plaquette “excitations” (= Wilson loops) over some base state 
→ -dim Hilbert space 

NB: DMRG works well even for >200 spins

2|𝒫|

7

X
Z Z

Z

H = − ∑
e∈ℰbulk

seZ(p(l)
e )Z(p(r)

e ) − ∑
e∈ℰbnd

seZ(pe) − λ ∑
p∈𝒫

X(p)

 determined by  (static charges)se = ± 1 {gn}

|000000⟩ |000001⟩ |011001⟩



Triangular pure  LGT ❤︎ heavy hexℤ2
8

ibm_pittsburgh (Heron r3 - 156 qubits)

“Here we consider a U(1) quantum link model on a triangular lattice, ... 
that ideally matches the heavy hexagonal topology of the Eagle chip.”

cf.

Cobos et al. arXiv:2507.08088
also

Plaquette qubits = ancillae

3

in these precursors to rotational dynamics and Regge tra-
jectories of meson-like composites. Going beyond a single
string, we demonstrate how multi-string configurations
can fragment and reorganize in a heavy-massive regime,
distinct from conventional string breaking via particle-
antiparticle creation. Our observations, validated by ten-
sor network simulations, provide a direct bridge between
the theoretical constructs of e!ective string-like models
and tangible, dynamic observables, opening a new fron-
tier for probing the non-perturbative physics of gauge
theories. Moreover, the methods developed and the
lessons learned are broadly applicable to quantum simu-
lations beyond the specific model studied in this work.

II. THE Z2-HIGGS MODEL & STATIC
PROPERTIES

Gauge-Higgs models are central in understanding con-
finement and symmetry breaking in LGTs [11, 12]. In the
Z2 case [24, 25], paralleling the situation with other gauge
groups, the Higgs and confined phases are not separated
by a sharp phase transition but are instead smoothly con-
nected. In the square lattice, which has also proven to
be foundational in condensed matter [26], the deconfined
phase underlies the topological order in some types of
quantum spin liquids [27], while charge or flux condensa-
tion leads to the confined and Higgs phases, respectively.

We adapt the Z2HM to a particular hardware, IBM
superconducting chips with heavy-hexagonal connectiv-
ity, used to minimize frequency collisions for high-fidelity
gates [28, 29]. The model hereby realized is a LGT with
Pauli matter and gauge fields with a Hamiltonian,

H = →m
∑

n

ωzn→g
∑

(n,v)

εz

(n,v)→ϑ
∑

n,v

ωxn+vε
x

(n,v)ω
x

n. (1)

Here, ω , ε are Pauli operators defined in a constrained
tensor-product Hilbert space, n denotes the sites of the
hexagonal lattice, while v stands for the unit lattice vec-
tors; in the basis where ωz, εz are diagonal, we de-
fine their eigenvectors by ωz|0↑ = |0↑, εz|0↑ = |0↑, and
ωz|1↑ = →|1↑, εz|1↑ = →|1↑. As usual, matter fields live
on the sites and gauge fields on the links, as shown in
Fig. 1(a). The first two terms HM = m

∑
n ωzn and

HE = g
∑

n,v ε
z

(n,v), encode the local energies of mat-

ter and electric fields, while HI = ϑ
∑

n,v ω
x

n+vε
x

(n,v)ω
x

n

defines their gauge-invariant coupling.
Note that this Hamiltonian di!ers from the traditional

Kogut-Susskind Hamiltonian for LGTs [30], as magnetic
plaquette terms inducing direct fluctuations of electric
field configurations are absent. In doing this, we avoid
a considerable circuit-depth overhead in a Trotter ex-
pansion since the plaquette term would require a six-
body interaction in the heavy-hex lattice. We emphasize,
however, that this does not preclude resolving the phe-
nomenology of a deconfined phase, as dynamical matter
can tunnel along closed loops and lead to e!ective pla-
quette fluctuations, as discussed in more depth in the

following. The Z2 gauge symmetry is generated by the
operators,

Gn = ωzn
∏

v→ωn

εz

(n,v), [Gn, H] = 0 ↓n, (2)

where ϖn denotes the directions of the links connected
to site n in this trivalent lattice (see Fig. 1(a)). Since
gauge symmetries commute with the Hamiltonian, they
are constants of motion, dividing the complete Hilbert
space into sectors with di!erent eigenvalues Gn |ϱ↑ =
± |ϱ↑ . These are related to the absence (+) or presence
(→) of a static background charge at the site n. We focus
on physical states stabilized by the generators,

Gn |ϱ↑ = |ϱ↑ , (3)

which can be understood as a discrete Gauss’ law.
This model has three distinct regimes sketched in

Fig. 1(b). The Higgs regime appears for small values of
m and g, while the confined regime emerges when both
m and g are su”ciently large. Despite the absence of
a plaquette term, a deconfined phase appears at large
m and very small g. In the Higgs regime, the ground
state of the model is a highly entangled non-local su-
perposition of all the physical states in the eigenbasis of
HM and HE , which correspond to the classical configu-
rations of the matter and gauge fields. In limits m ↔ 0
or g ↔ 0, the model can be diagonalized in terms of mu-
tually commuting stabilizer operators ωxn+vε

x

(n,v)ω
x

n and

ωzn
∏

v→ωn
εz

(n,v). The ground state is non-degenerate,
and there is a finite energy gap between the ground and
first excited states.
In the confined regime, the eigenstates are close in

energy and fidelity to those of HM , HE , the ground
state approaches |000 . . . 0↑ as m or g increases, and
gauge-invariant excitations correspond to localized mat-
ter charges connected by electric field lines. The large
value of m leads to a global U(1) symmetry related to
the conservation of the total number of charges. Gauge
invariance forces the pairs of charges to be connected
by an electric field string, which has a large energetic
cost proportional to g to stretch or compress, and yields
an e!ective potential growing linearly with their relative
distance. In this phase, the mean local matter magneti-
zation takes the value ↗ωz↑ ↘ 1, as shown in Fig. 5 of the
extended data.

The confined and Higgs regimes are adiabatically con-
nected, since we find no gap closing as the microscopic
parameters are varied; see Fig. 1(b). This characteris-
tic is maintained in the thermodynamic limit for small
values of m, and it follows from the fact that the con-
fined ground state is contained in the superposition of
the Higgs ground state; thus, no energy crossings or gap
closure occur along the adiabatic path. For m = 0, the
Hamiltonian becomes the sum of commuting terms,

H = →
∑

n,v

(
g εz

(n,v) + ϑ ωxn+vε
x

(n,v)ω
x

n

)
, (4)

Collaboration: Debasish Banerjee, Anthony Gandon,
Emilie Hu!man, Gurtej Kanwar, Alessandro Mariani,
Francesco Tacchino, Ivano Tavernelli, UJW
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on a triangular lattice, which is equivalent to a dual height
model on a hexagonal lattice that ideally matches the heavy
hexagonal topology of the Eagle chip [57]. The height vari-
ables are directly embodied by individual qubits. This allows
us to study the intriguing real-time dynamics of confining
strings, which in this case also represent interfaces separat-
ing distinct nematic confined phases. In those phases lattice
rotation invariance is spontaneously broken while transla-
tion invariance remains intact (cf. [58–63]). Here we study
the confining dynamics in 2 + 1 dimensions, using near-term
quantum hardware, without taking a continuum limit.

II. MODELS AND OBSERVABLES

We consider a U(1) quantum link model on a triangular
lattice, with a two-dimensional link Hilbert space analogous
to a quantum spin 1

2 . The two link states carry electric fluxes
± 1

2 . The Hamiltonian takes the form

H =
∑

!
H! = −J

∑

!
[U! + U †

! − λ(U! + U †
!)2]. (1)

Here U! = UxyUyzUzx is an operator associated with the par-
allel transport around a triangular plaquette !. It is built from
quantum link operators Uxy connecting nearest-neighbor sites
x and y. A U(1) quantum link Uxy = S1

xy + iS2
xy = S+

xy is a
raising operator of electric flux Exy = S3

xy, constructed from
a quantum spin 1

2 , Sa
xy (a ∈ {1, 2, 3}), associated with the link

xy. The first term in the Hamiltonian inverts a closed loop of
electric flux around a triangular plaquette. It also annihilates
nonflippable plaquette states, i.e., those that do not contain
a closed flux loop. The Rokhsar-Kivelson term, proportional
to λ, counts flippable plaquettes. The Hamiltonian commutes
with the generators of infinitesimal U(1) gauge transforma-
tions, which correspond to the lattice divergence of the electric
flux operators,

Gx =
∑

i=1,2,3

(Ex,x+î − Ex−î,x ). (2)

Here î denotes unit vectors in three lattice directions separated
by 120◦ angles. In the absence of external charges, physical
states |"〉 obey the Gauss law Gx|"〉 = 0. When static exter-
nal charges Qx ∈ {±1,±2,±3} are installed at the lattice sites
x, the Gauss law is modified to Gx|"〉 = Qx|"〉. Besides the
U(1) gauge symmetry, there are several global symmetries,
including lattice translations, rotations, and reflections, and
charge conjugation C, which replaces Uxy by U †

xy and Exy by
−Exy. We consider a rhombic lattice of side length L with
periodic boundary conditions, which is equivalent to a regular
hexagon with side length L/

√
3, thus maintaining all lattice

symmetries even in a finite volume. The torus topology im-
plies an additional global U(1)2 center symmetry associated
with large gauge transformations [64]. The corresponding
superselection sectors are characterized by wrapping elec-
tric fluxes F1 = E2 − E3, F2 = E3 − E1, and F3 = E1 − E2,
where Ei = 1

L

∑
x Ex,x+î ∈ Z/2. The Fi ∈ Z commute with

the Hamiltonian, but cannot be expressed through small pe-
riodic gauge transformations Gx. It should be noted that the
three Fi are not independent because F1 + F2 + F3 = 0.

It is natural to introduce dual degrees of freedom: quan-
tum height variables which are associated with the hexagonal
lattice that is dual to the original triangular lattice. The dual
hexagonal lattice is bipartite and consists of two sublattices A
and B. The height variables on sublattice A are associated with
the center x̃ of an original triangle and take values hA

x̃ ∈ {0, 1},
while the height variables on sublattice B take the half-integer
values hB

x̃ ∈ {− 1
2 , 1

2 }. A configuration of height variables is
associated with a flux configuration

Ex,x+î =
(
hA

x̃ − hB
x̃′
)
mod2 = ± 1

2 . (3)

Here x̃ = x + 1
3 (î − ĵ) and x̃′ = x + 1

3 (î − k̂), where j = (i −
1)mod3 and k = (i + 1)mod3. It should be noted that, for
a given flux configuration, the height variables are uniquely
defined only up to a global shift hX

x̃ → [hX
x̃ + 1]mod2 (X ∈

{A, B}). The introduction of the dual height variables guar-
antees that the Gauss law of the original flux variables is
automatically satisfied modulo 2. In order to impose the full
Gauss law, the height variables are subject to a corresponding
constraint. In order to define the height variables in the pres-
ence of odd charges Qx ∈ {±1,±3}, one must connect these
charges by Dirac strings running along the links of the original
triangular lattice. Across a Dirac string, one of the adjacent
height variables must be shifted by 1 modulo 2.

In order to identify the symmetry-breaking patterns in the
different phases, we introduce two order parameters

MA = 2
L2

∑

x̃∈A

(
hA

x̃ − 1
2

)
, MB = 2

L2

∑

x̃∈B

hB
x̃ , (4)

associated with the two sublattices (each with L2 plaquettes
such that MA, MB ∈ [−1, 1]). Due to the global shift ambi-
guity of the height variables, (MA, MB) and (−MA,−MB)
are physically equivalent. It is important to understand the
transformation behavior of the order parameters under the fol-
lowing symmetries: the charge conjugation C, the 60◦ rotation
O around a point on the triangular lattice, the reflection R on a
lattice axis, and the reflection R′ = RO on an axis orthogonal
to a lattice axis. The order parameters transform as

CMA = MA, CMB = −MB,

OMA = MB, OMB = −MA,

RMA = MB, RMB = MA,

R′
MA = MA, R′

MB = −MB. (5)

III. METHOD AND NUMERICAL RESULTS

It is straightforward to set up a Euclidean time path integral
for the canonical partition function Z = Tr[exp(−βH )P] (at
inverse temperature β) using the dual height variable rep-
resentation. Here the operator P, which commutes with the
Hamiltonian, imposes the Gauss law by projecting onto the
Hilbert space of physical states. We have developed an ef-
ficient quantum Monte Carlo cluster algorithm (cf. [20,65])
that operates on the height variables, one sublattice at a time.
Equal-value height variables are connected to clusters accord-
ing to rules that guarantee detailed balance. Special rules
apply in the last time slice in which the projection operator P
enforces the Gauss law. The algorithm has been implemented
in continuous Euclidean time [66].

023176-2
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Triangular pure  LGT ❤︎ heavy hexℤ2

156-qubit Trotter (2nd-order) step: 
• 448 CZ + 128 Rzz 

• depth 22

9

 → continuous-angle gateRzz(−2λΔt)

UE ( Δt
2 ) UB(Δt) UE ( Δt

2 )
q0 q1

q2

q3



Ground state must be sparse in Z basis for SKQD to work 
→ Need to be in weak-coupling ( ) regimeλ ≲ 1

Sparsity of the ground state
10

Triangular lattice 
corresponding to 4x8 Ising

C0.999 = argminn (
n−1

∑
i=0

|ci |
2 > 0.999)

|amplitude|2 in 
descending order



SKQD in practice
We need to sample  
with . 
• What are good  and  values? 
• How do we deal with errors? 

U|ψ0⟩, U2|ψ0⟩, …, UD|ψ0⟩,
U = exp(−iHΔt)

D Δt

11

[1] Epperly et al., 10.1137/21M145954X

Δt = 0.6 
(0.8/16 = 0.050)

Δt=0.5 
(0.8/24=0.033)

Δt=0.4 
(0.8/32=0.025)

: simulator samples 
: DMRG

S
|Ω⟩

1− ∑x∈S |⟨x |Ω⟩ |2

 and : 
Theoretically, [1] 

→ for ,  

But practical  is known to be ~10x 

Chose (arbitrarily)  & 

D Δt
(Δt)opt = π/∥H∥

λ = 1 (Δt)opt ∼ 0.8/Np

(Δt)opt

D = 8 Δt = 10/Np

https://epubs.siam.org/doi/10.1137/21M145954X


Configuration recovery
Bits are flipped by errors in the obtained samples. 
How can we know what we were supposed to have observed?

12

Task: 
Device a case-specific procedure to generate the support of Krylov states 

using observed bitstrings as hints

Example from the chemistry paper: 
 

(Electron number / Total spin / Z spin conservation)
|1001⟩ → {|1001⟩, |1010⟩, |0101⟩, |0110⟩}

Use symmetries, constraints, ...

Having more states is OK 
as long as basis size is classically tractable



Configuration recovery for Z2 LGT

Gauss's law expressed in Z basis → Can check on bitstrings 
Violation events = “syndromes” in QEC-speak 
→ Use tools from QEC to correct bit flips on links 

Minimum-weight perfect matching (MWPM)
= Find shortest paths between pairs of error detection events

13

Gn|ψ⟩ = gn|ψ⟩ (gn = ± 1)

Gn = ∏
e∈∂vn

Z(e)



MWPM is not enough
Syndrome measurements can only catch deviations 
into a different charge sector. 
→ MWPM proposes one physical state, but 
states with arbitrary Wilson loops are all equally valid.

14

?
?

?

How to include the correct state in the SKQD basis 
• Random plaquette excitations → ✘ 
• Informed guesses through an error model → Use a generative model

i.e. All possible physical states
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Configuration recovery flow

MWPM

For each shot:

Link state 
010010010

Base plaquette state = Ising spin state 
001101

Vertex state = syndrome 
{+1, +1, +1, +1, -1, -1, +1}

Generative model 
(CRBM)

Wilson loops

Wilson loops

Wilson loops

Spin state 
011101

Spin state 
101101

Spin state 
001100

SKQD basis



Conditional restricted Boltzmann machine
16

well. One example of such problem is multi-label clas-
sification. We propose to use semantic hashing in order
to define and e�ciently compute, a small set of possi-
ble outputs to predict given some input. This allows
us to perform exact inference over this set, under the
CRBM’s energy function.

In the second setting, we simply assume that the
output space is high-dimensional and highly vari-
able. Denoising and image labeling are problems that
fall in this category. In this context, we propose
a perceptron-like algorithm for training conditional
RBMs. We then demonstrate that CD-based training
of a conditional RBM fails to find a good solution on
a denoising problem while perceptron-based training
succeeds.

2 Training RBMs

We begin with an overview of maximum likelihood
learning in RBMs before proceeding to learning in con-
ditional RBMs.

2.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine is an undirected
graphical model that defines a probability distribution
over a vector of observed, or visible, variables v and a
vector of latent, or hidden, variables h. In this paper,
we consider the case where v and h are binary vectors.
An RBM defines a joint probability over v and h,

p(v,h) = exp (�E (v,h)) /Z, (1)

where Z is a normalization constant and E is an energy
function given by

E (v,h) = �vT Wh� vT bv � hT bh. (2)

W is a matrix of pairwise weights between elements
of v and h, while bv and bh are biases for the visible
and hidden variables respectively. To obtain p(v) one
simply marginalizes out h from the joint distribution:

p(v) =
X

h

exp (�E(v,h)) /Z = exp (�F (v)) /Z (3)

where F (v) is called the free energy and can be com-
puted in time linear in the number of elements in v
and h:

F (v) =� log
X

h

exp (�E(v,h)) (4)

=� vT bv �
X

j

log
�
1 + exp

�
bh
j + vT W·j

��

(5)

v v

h

u

W

bv
i

bh
j

bv
i

bh
j

Wvh
Wuv

Wuh

(A) (B)

Figure 1: Illustration of an RBM (A) and a conditional
RBM (B).

RBMs have generally been trained using gradient de-
scent in negative log-likelihood �l(✓) for some set of
training vectors V. By writing the log-likelihood as

log p(v) = log exp (�F (v))� log
X

v0

exp (�F (v0, )),

(6)

and di↵erentiating �l(✓) with respect to some param-
eter ✓, we get the gradient

@ � l(✓)
@✓

=
@F (v)

@✓
�

X

v0

@F (v0)
@✓

p(v0). (7)

The first term in Equation 7 can be computed exactly.
This term is often referred to as the positive gradi-
ent. It also corresponds to the expected gradient of
the energy (as opposed to the free energy), where the
expectation is with respect to p(h|v). This simplifi-
cation occurs because the gradient of F w.r.t. p(h|v)
is zero, so the e↵ect of changing the parameters on
p(h|v) can be ignored.

The second term in Equation 7, known as the nega-
tive gradient, is an expectation over the model dis-
tribution, p(v), and is intractable to compute exactly
for all but the smallest models. It is possible to esti-
mate the negative gradient by drawing samples from
the model using MCMC methods. Since both p(v|h)
and p(h|v) factor over the variables, it is possible to
e�ciently perform Gibbs sampling by alternating be-
tween updating all of v and all of h simultaneously.
We can then ignore the sampled h and only keep the
sampled v. Nevertheless, running a Gibbs chain until
equilibrium for each parameter update is not feasible.

2.2 Contrastive Divergence

The first practical method for training RBMs was in-
troduced by Hinton (2002), who showed that the neg-
ative gradient can be approximated using samples ob-
tained by starting a Gibbs chain at a training vec-
tor and running it for a few steps. This method ap-
proximately minimizes an objective function known
as the Contrastive Divergence. Even though it has
been shown that the resulting gradient estimate is not

Restricted Boltzmann machine 
Boltzmann machine with 2 (“v” and “h”) layers. 
Given a set of binary vectors , maximize 

 

where 
 

and .

X = {xi}
∏xi∈X p(xi) = ∏xi∈X ∑h e−E(xi,h;W,a,b)/Z

E(v, h; W, a, b) = − vTWh − a ⋅ v − b ⋅ h
Z = ∑vh e−E

Mnih et al. 1202.3748

RBM as a generative model 
Can generate events via MCMC: 

 ← Random binary vector 
for a large number: 

 
 

end for 
return 

v

h ∼ p(h |v)
v ∼ p(v |h)

v

Conditional RBM 
Probabilities depend on external  
→ : syndromes, : Wilson loops

u
u v

http://arxiv.org/abs/1202.3748


CRBM training
17

UE
(Δt/2)

UM
(Δt/2)

UM
(−Δt/2)

UE
(−Δt/2)

UE
(Δt/2)

UM
(Δt)

UE
(Δt/2)

Training dataset from forward-backward circuits 
• Circuit structure identical to 2nd-order Trotter 
• Correct final state known (000..0) 
→ All Wilson loops are due to bit flips 

For each shot, extract  and  after MWPM correctionu v

2nd-order Trotter

Forward-backward

Blue: generated data 
Black: test data 

arbitrary bitstring indices



Energy with configuration recovery
18

Full-QPU model result not yet available

Smaller model (48 plaquettes) on ibm_pittsburgh

E0 (λ=0.8) ΔEDMRG

MWPM only -87.981 1.162

With CRBM 
samples -88.271 0.872

DMRG -89.143 0

SKQD basis size (reduced Hamiltonian dim.) ~ 5.5M



Scaling and generalization
Not easy to scale the method up 
• Support of ground state grows ~exponentially 

with lattice size 
→ Lower  

•  scales inversely with lattice size 
→ More Trotter steps 

Way forward 
• Better use of (quasi-) translational / rotational symmetry? 
• Larger  with smaller lattice? 
• Apply the method to LGT with Abelian Gauss's law?

λ
(Δt)opt

λ

19



Conclusion & outlook
• Applied sample-based quantum Krylov diagonalization to LGT 
• Triangular  pure LGT maps well onto heavy-hex lattice 

• Is dual to hexagonal Ising model 
• Ground state of Triangular  LGT is sparse if not too close to  
• Studied optimal SKQD parameters with DMRG and circuit simulation 
• Demonstrated a novel configuration recovery procedure based on a generative 

model (CRBM) 
• Should work if LGT has Abelian Gauss's law 
• Energy estimation improves with configuration recovery 

• We can compute the ground state; now look into physics.. 
(Potential curve, string breaking / roughening, approach to phase transition, ...)

ℤ2

ℤ2 λc

20


