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Why we want the ground state of LGTs

Vacuum properties
 Phase diagram
» Correlation length
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 Boundary, topology, .

Dependency on constraints
 Response to static probe charges

As an initial state
* Single-particle excitations

A » Quench

Spectrum
e |f excited states are buildable



Quantum subspace diagonalization
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Approximating the ground state of many-body systems is a key computational bottleneck underly-
ing important applications in physics and chemistry. The most widely known quantum algorithm for
ground state approximation, quantum phase estimation, is out of reach of current quantum proces-
sors due to its high circuit-depths. Subspace-based quantum diagonalization methods offer a viable
alternative for pre- and early-fault-tolerant quantum computers. Here, we introduce a quantum
diagonalization algorithm which combines two key ideas on quantum subspaces: a classical diago-
nalization based on quantum samples, and subspaces constructed with quantum Krylov states. We



Sample-based diagonalization
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Sample-based Krylov diagonalization

Given a state |y) s.t. (Q|yy) # 0,
|Q2) € lim span{U”h/fO)}ff:O
D— o0 \A

where U = e "2 for some At.

-

' Krylov space
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Sample from all Krylov basis states
— (Ground state should be in the subspace
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The system: 2D triangular pure Z, LGT
H=—ZZ(e)—,12 HX(e):HE+HM

eE%\ PEL ecop
edges plaguettes
'S law: .

Gauss's la » Pure Zo — g, are static charges
Gnhm — gn‘l”) (&, ==%1) * There can only be even number of -1s
G, = H Z(e) e Edges are the only dynamic d.o.f.

e€ov, . 2!%l_dim Hilbert space

(with gauge redundancy)



Dual: Hexagonal Ising model

H=- ) sZp"Zp) = Y, sZp) =4 ), X(p)

€& i \ e€&, 4 pPEDP

s, = £ 1 determined by {g,} (static charges)

e (Fauss's law is solved at the Hamiltonian level /%

— No gauge redundancy N7 i\Z

* Plaguettes (— Ising spins) are the dynamical d.o.t. | \
Basis: plagquette “excitations” (= Wilson loops) over some base state

— 21?l_dim Hilbert space <X> <X> <X>
NB: DMRG works well even for >200 spins

|000000) [000001) |011001)




Triangular pure Z, LGT ® heavy hex

ibm_pittsburgh (Heron r3 - 156 qubits) cf

H = —mZTfL—g Z o
n

(n,v) :
Cobos et al. arXiv:2507.08088

also

P-48 |8 -L.L Vm. k 2
(’ L4,_ —

Link qubits = dynamic d.o.f. Plaquette qubits = ancillae

Banerjee et al. PRR 4

that ideally matches the heavy hexagonal topology of the Eagle chip.”

“Here we consider a U(1) quantum link model on a triangular lattice, ...


https://arxiv.org/abs/2507.08088
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.023176

Triangular pure Z, LGT ® heavy hex

R_.(—2AAtf) — continuous-angle gate

156-qubit Trotter (2nd-order) step:
e A48 CZ + 128 Rzz
e depth 22



Sparsity of the ground state

Ground state must be sparse in Z basis for SKQD to work

— Need to be in weak-coupling (4 S 1) regime

Magnetization

Ising lattice
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SKQD in practice

We need to sample Ulyp), U|w), ..., UP|yp), T I
with U = exp(—iHA?). oyl
At=0.4 — o7
 What are good D and At values? (0.8/32=0.025) [ _
« How do we deal with errors? L
ﬁ) and Af: \At:O.S T
Theoretically, (Af)... = z/||H||[] (0.8/24=0.033)

opt

= ford =1, (Af)y, ~ 0.8/N,
But practical (A7), Is known to be ~10x a

| - 5 2 4 6 5 10 12

Krylov dim.

109+

10714

x|Q)|?

2 S:simulator samples

[1] Epperly et al., 10.1137/21M145954X |1Q2): DMRG



https://epubs.siam.org/doi/10.1137/21M145954X
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Configuration recovery

Bits are flipped by errors in the obtained samples.
How can we know what we were supposed to have observed?

Task:

Device a case-specific procedure to generate the support of Krylov states
using observed bitstrings as hints

Use symmetries, constraints, ...

Example from the chemistry paper: Having more states is OK

‘1()()1> — {‘1001)3 ‘101()), ‘0101>, ‘0110>} as long as basis size is classically tractable

(Electron number / Total spin / Z spin conservation)



Configuration recovery for Z2 LGT

fG,Al/f) =g, ly) (g,== 1)\

G, = | ze
\ ecov, J
(Gauss's law expressed in Z basis = Can check on bitstrings

Violation events = “syndromes” in QEC-speak
— Use tools from QEC to correct bit flips on links

Minimum-weight perfect matching (MWPM)
= Find shortest paths between pairs of error detection events

13



MWPM Is not enough

Syndrome measurements can only catch deviations
iNnto a different charge sector.

—+ MWPM proposes one physical state, but
states with arbitrary Wilson loops are all equally valid.

..e. All possible physical states

How to include the correct state in the SKQD basis
* Random plaquette excitations — X
* Informed guesses through an error model = Use a generative model

14
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Configuration recovery flow

For each shot:

: MWPM

Vertex state = syndrome

{(+1, +1, +1, +1, -1, -1, +1}

llllllllllllllllllllllllll

Link state R Base plaquette state = Ising spin state |—
010010010 A 001101 Ll Spin state
: 011101

llllllllllllllllllllllllll

-------------------------
* .

Saaces T Spin state
>: Wilson loops : 101101
:‘: ....... . ‘ Spin state
‘ SR ~ 001100

R Generative model

(CRBM) SKQD basis
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Conditional restricted Boltzmann machine

COODOO) h BCOOHOO)
W W weue (W
OCOO®WO)V  u COOWO) v
(A) (B)

Figure 1: Ilustration of an RBM (A) and a conditional
RBM (B). .
B) Mnih et al. 1202.3748

Restricted Boltzmann machine
Boltzmann machine with 2 (“v” and “h”) layers.
Given a set of binary vectors X = {x;}, maximize

Hx,-eXp (X;) = HxieX zhe_E(Xi’h;W’a’b)/Z

where
Evv,h;W,a,b)=—-vIWh—a-v—b-h
andZ= 3 e™"

RBM as a generative model

Can generate events via MCMC:

. v « Random binary vector
. for a large number:

h ~ p(h|v)
. v~p(v|h)
§ end for
return v

Conditional RBM

Probabillities depend on external u
— u: syndromes, v: Wilson loops



http://arxiv.org/abs/1202.3748

CRBM training

e Y Y e

Training dataset from forward-backward circuits Ve | U« | Ue -

L . . —1(At/2) | (A1) | (A1/2) [~

e Circuit structure identical to 2nd-order Trotter —____N N
« Correct final state known (000..0) 2ne-order frotter

— All Wilson loops are due to bit flips YT .

Ug § Uy Uy Ug -
(At/2) [| (At/2) [(—At/2 (—At/2):
_ I Y,

0.40 Forward-backward

0.35 A

For each shot, extract u and v after MWPM correction

0.30 A
0.25 A
0.20 A
0.15 +

0.10 +

Blue: generated data
Black: test data

0.05 +

0.00 -

0 10 20 30 40

arbitrary bitstring indices



18

Energy with configuration recovery

Full-QPU model result not yet available

Smaller model (48 plaquettes) on ibm_pittsburgh

Eo (A=0.8) AEpmRre

MWPM only [EEE:YA:1:3 1.162
With CREM Erve 0.872
samples
DMRG -89.143 0

SKQD basis size (reduced Hamiltonian dim.) ~ 5.5M




Scaling and generalization

les Ground state support
Not easy to scale the method up > | i Iattice
. — 4x4
« Support of ground state grows ~exponentially 4 - ax8
with lattice size N e
— Lower A = s :
Q I o

o (A1), scales inversely with lattice size
— More Trotter steps

103 12, , ,
20 40 60

Way forward °"00 05 10 15 20 25 30 35 40
A
» Better use of (quasi-) translational / rotational symmetry?

. Larger A with smaller lattice?

 Apply the method to LGT with Abelian Gauss's law?
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Conclusion & outlook

* Applied sample-based quantum Krylov diagonalization to LGT
« [riangular Z, pure LGT maps well onto heavy-hex lattice

* |s dual to hexagonal Ising mode
o Ground state of Triangular Z, LGT is sparse if not too close to 4.

e Studied optimal SKQD parameters with DMRG and circuit simulation

* Demonstrated a novel configuration recovery procedure based on a generative
model (CRBM)

e Should work if LGT has Abelian Gauss's law
* Energy estimation improves with configuration recovery

* We can compute the ground state; now look into physics..
(Potential curve, string breaking / roughening, approach to phase transition, ...)



