Entanglement and thermalization in jet production in massive Schwinger model

David Frenklakh

Berkeley

October 1, 2025

Real-time nonperturbative dynamics in QCD

Real-time nonperturbative dynamics in QCD

(if the future is bright)

Real-time nonperturbative dynamics in QCD

(if the future is bright)

Near-term

Relevant physics can already be learned with current methods:

- Entanglement in jet fragmentation
- Thermalization in high-energy processes

Real-time nonperturbative dynamics in QCD

(if the future is bright)

Near-term

Relevant physics can already be learned with current methods:

- Entanglement in jet fragmentation
- Thermalization in high-energy processes

Schwinger model (1+1)D U(1) gauge theory

Image credit: ChatGPT

Image credit: ChatGPT

Tensor networks

Image credit: ChatGPT

Tensor networks

Exact diagonalization

Schwinger model and jets: history

Vacuum polarization and the absence of free quarks

A. Casher, * J. Kogut, † and Leonard Susskind‡

Massless Schwinger model with external source:

$$j_0^{\text{ext}} = g\delta(z-t), \quad j_1^{\text{ext}} = g\delta(z-t) \quad \text{for } z > 0,$$

$$j_0^{\text{ext}} = -g\delta(z+t), \quad j_1^{\text{ext}} = g\delta(z+t) \quad \text{for } z < 0,$$

Schwinger model and jets: history

1974

Vacuum polarization and the absence of free quarks

A. Casher, * J. Kogut, † and Leonard Susskind‡

Massless Schwinger model with external source:

$$j_0^{\text{ext}} = g\delta(z-t), \quad j_1^{\text{ext}} = g\delta(z-t) \quad \text{for } z > 0,$$

$$j_0^{\text{ext}} = -g\delta(z+t), \quad j_1^{\text{ext}} = g\delta(z+t) \quad \text{for } z < 0,$$

2012

Jet energy loss and fragmentation in heavy ion collisions

Dmitri E. Kharzeev^{1,2} and Frashër Loshaj¹

$$\phi(x) = \theta(t^2 - z^2)[1 - J_0(m\sqrt{t^2 - z^2})]$$

[Gauss, Jordan, Kogut, Law, Susskind, Wigner]

The setup

$$H^{L} = \frac{1}{4a} \sum_{n=1}^{N-1} (X_{n} X_{n+1} + Y_{n} Y_{n+1}) + \frac{m}{2} \sum_{n=1}^{N} (-1)^{n} Z_{n} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} L_{n}^{2} m = 0.25$$

$$V_{n} = 0.25$$

$$V_{n} = 0.25$$

$$V_{n} = 0.25$$

Kinetic energy

Mass term

Electric energy
$$L_n = \sum_{i=1}^n q_i$$

The setup

$$H^{L} = \frac{1}{4a} \sum_{n=1}^{N-1} (X_{n} X_{n+1} + Y_{n} Y_{n+1}) + \frac{m}{2} \sum_{n=1}^{N} (-1)^{n} Z_{n} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} L_{n}^{2} m = 0.25$$

Add the external charges (jets):

$$H^{L}(t) = \frac{1}{4a} \sum_{n=1}^{N-1} (X_n X_{n+1} + Y_n Y_{n+1}) + \frac{m}{2} \sum_{n=1}^{N} (-1)^n Z_n$$
$$+ \frac{ag^2}{2} \sum_{n=1}^{N-1} (L_{\text{dyn},n} + L_{\text{ext},n}(t))^2.$$

The setup

$$H^{L} = \frac{1}{4a} \sum_{n=1}^{N-1} (X_{n} X_{n+1} + Y_{n} Y_{n+1}) + \frac{m}{2} \sum_{n=1}^{N} (-1)^{n} Z_{n} + \frac{ag^{2}}{2} \sum_{n=1}^{N-1} L_{n}^{2} m = 0.25$$

Add the external charges (jets):

Screening, chiral condensate and entanglement

Screening, chiral condensate $E_{\text{ele, }t} - E_{\text{ele, }0}$ and entanglement 10 Electric energy Chiral condensate 0.5 0.0 Entanglement entropy $1.0 \vdash S_{\text{EE}}$ 0.6 $0.1 \vdash Q_t$ Total charge 0.1 15

Screening, chiral condensate $E_{\text{ele, }t} - E_{\text{ele, }0}$ $ag^2/2$ and entanglement Screening the electric field $\nu_t - \nu_0$ Effects of the dynamical Destroying 1.0 vacuum 0.5 pair production: condensate 0.0 $1.0 \vdash S_{\text{EE}}$ 0.8 Entangling $S_{EE} = -\mathsf{Tr}_A(\rho_A \log \rho_A)$ 0.6 $\rho_A = \mathsf{Tr}_B \rho$, the jets 0.40.1 ⊨

Entanglement spectrum

L R

Schmidt spectrum

$$|\Psi(t)\rangle = \sum_{i=1}^{2^{N/2}} \sqrt{\lambda_i(t)} |\psi_i^L(t)\rangle \otimes |\psi_i^R(t)\rangle$$

$$\rho_L(t) = \sum_{i=1}^{2^{N/2}} \lambda_i(t) |\psi_i^L(t)\rangle \langle \psi_i^L(t)|$$

$$S_{EE}(t) = -\sum_{i=1}^{2^{N/2}} \lambda_i \ln \lambda_i$$

Entanglement spectrum

R

Towards maximally entangled state

Renyi α-th entropy

$$S_{\alpha}(t) \equiv \frac{\ln \operatorname{Tr}_{L}(\rho_{L}(t)^{\alpha})}{1 - \alpha} = \frac{\ln \sum_{i=1}^{2^{N/2}} \lambda_{i}^{\alpha}}{1 - \alpha}$$

Entangleness

$$\mathcal{E} \equiv \frac{1 - \text{tr}\rho_L^2}{1 - 2^{-N/2}} = \frac{1 - \sum_{i=1}^{2^{N/2}} \lambda^2}{1 - 2^{-N/2}}$$

Towards maximally entangled state

Renyi α-th entropy

$$S_{\alpha}(t) \equiv \frac{\ln \operatorname{Tr}_{L}(\rho_{L}(t)^{\alpha})}{1 - \alpha} = \frac{\ln \sum_{i=1}^{2^{N/2}} \lambda_{i}^{\alpha}}{1 - \alpha}$$

Entangleness

$$\mathcal{E} \equiv \frac{1 - \text{tr}\rho_L^2}{1 - 2^{-N/2}} = \frac{1 - \sum_{i=1}^{2^{N/2}} \lambda^2}{1 - 2^{-N/2}}$$

pure state (PS) vs. maximally entangled state (MES)

$$S_{\alpha}[PS] = 0$$
, $\mathcal{E}[PS] = 0$
 $S_{\alpha}[MES] = \frac{N \ln 2}{2} \ \forall \alpha$, $\mathcal{E}[MES] = 1$

Towards maximally entangled state

Renyi α-th entropy

$$S_{\alpha}(t) \equiv \frac{\ln \operatorname{Tr}_{L}(\rho_{L}(t)^{\alpha})}{1 - \alpha} = \frac{\ln \sum_{i=1}^{2^{N/2}} \lambda_{i}^{\alpha}}{1 - \alpha} \qquad 2 - \frac{1}{1 - \alpha}$$

Entangleness

$$\mathcal{E} \equiv \frac{1 - \text{tr}\rho_L^2}{1 - 2^{-N/2}} = \frac{1 - \sum_{i=1}^{2^{N/2}} \lambda^2}{1 - 2^{-N/2}} \quad \text{as } 0.5$$

pure state (PS) vs. maximally entangled state (MES)

$$S_{\alpha}[PS] = 0$$
, $\mathcal{E}[PS] = 0$

$$S_{\alpha}[\text{MES}] = \frac{N \ln 2}{2} \ \forall \alpha \ , \quad \mathcal{E}[\text{MES}] = 1$$

Hadronization in real time

Hadronization in real time

Accessible to exact diagonalization

Tensor network methods allow studying much larger system

Equilibration towards late times

Equilibration towards late times

Equilibration towards late times

Thermal expectation values

$$\langle \mathcal{O} \rangle_T = \frac{\sum_n e^{-E_n/T} \langle E_n | \mathcal{O} | E_n \rangle}{\sum_n e^{-E_n/T}}$$

Exact diagonalization: full diagonalization

Tensor network: purification (requires ancillas, doubling system size)

Thermal expectation values

$$\langle \mathcal{O} \rangle_T = \frac{\sum_n e^{-E_n/T} \langle E_n | \mathcal{O} | E_n \rangle}{\sum_n e^{-E_n/T}}$$

Exact diagonalization: full diagonalization

Tensor network: purification (requires ancillas, doubling system size)

Thermal expectation values

$$\langle \mathcal{O} \rangle_T = \frac{\sum_n e^{-E_n/T} \langle E_n | \mathcal{O} | E_n \rangle}{\sum_n e^{-E_n/T}}$$

Exact diagonalization: full diagonalization

Tensor network: purification (requires ancillas, doubling system size)

Temperature extraction

Local operators

Beyond local operators: entropy

Beyond local operators: entropy

Adjust by the jet arrival time

area law at early times

Beyond local operators: entropy

Adjust by the jet arrival time

area law at early times

Rescale by the subsystem size

volume law at late times
(expected in thermal states)

Gibbs entropy

$$S(T) = -\sum_{n} p_n(T) \log p_n(T)$$

$$e^{-E_n/T}/Z$$

Requires full diagonalization

Exact diagonalization

Finite volume effects

Gibbs entropy

$$S(T) = -\sum_{n} p_n(T) \log p_n(T)$$

$$e^{-E_n/T}/Z$$

Requires full diagonalization

Exact diagonalization

Finite volume effects

Gibbs entropy

$$S(T) = -\sum_{n} p_n(T) \log p_n(T)$$

$$e^{-E_n/T}/Z$$

Requires full diagonalization

Exact diagonalization

Finite volume effects

Thermodynamical entropy

$$s = \frac{\epsilon + P}{T}$$

Thermodynamical entropy

measure
$$s = \frac{\epsilon + P}{T}$$

Thermodynamical entropy

Identify with entanglement

Thermodynamical entropy

Identify with entanglement

Density matrix comparison

Maximize over T

More details in the talk by S. Grieninger tomorrow

Based on

• Real-Time Nonperturbative Dynamics of Jet Production in Schwinger Model: Quantum Entanglement and Vacuum Modification

Phys. Rev. Lett. **131**, 021902 (2023)

• Quantum real-time evolution of entanglement and hadronization in jet production: Lessons from the massive Schwinger model

Phys. Rev. D **110**, 094029 (2024)

A.Florio , DF, K.Ikeda,

D.Kharzeev,

V.Korepin,

S.Shi. K.Yu

• Thermalization from quantum entanglement: jet simulations in the massive Schwinger model

2506.14983

A.Florio, DF, S.Grieninger

,D.Kharzeev, A.Palermo

Outlook

Existing 1+1-dimensional methods

- Mimic real-time QCD processes and look through the prism of QIS
- Establish links between thermalization and entanglement

Goal: go to 2+1

- Angular structure
- Energy correlators
- Choice of tools not so obvious

Let's hope the future is bright!

BACKUP

Purification

$$\tilde{\mathcal{H}} = \mathcal{H} \otimes \mathcal{H}'$$

$$|\tilde{\Psi}(0)\rangle = \bigotimes_{i=1}^{N} \frac{|0\rangle_{i}|0\rangle'_{i} + |1\rangle_{i}|1\rangle'_{i}}{\sqrt{2}}$$

$$|\tilde{\Psi}(\beta)\rangle = \frac{1}{\sqrt{Z(\beta)}} e^{-\beta \hat{\tilde{H}}/2} |\tilde{\Psi}(0)\rangle$$

$$\widehat{\tilde{H}}_{\tilde{\mathcal{H}}} \equiv \widehat{H}_{\mathcal{H}} \otimes I_{\mathcal{H}'}$$

$$Z(\beta) \equiv \langle \tilde{\Psi}(0) | e^{-\beta \widehat{\tilde{H}}} | \tilde{\Psi}(0) \rangle$$

$$\langle \mathcal{O} \rangle_{\beta} = \langle \tilde{\Psi}(\beta) | \mathcal{O}_{\mathcal{H}} \otimes I_{\mathcal{H}'} | \tilde{\Psi}(\beta) \rangle$$

Trotter error control

Entanglement spectrum of finite interval

$$\Psi_{a\alpha}^{A}\Psi_{\alpha b}^{A*} \equiv (\Psi\Psi^{\dagger})_{ab}$$
$$\equiv (\rho^{A})_{ab}$$

$$\Psi^{A*}_{\alpha a} \Psi^{A}_{a\beta} \equiv (\Psi^{\dagger} \Psi)_{\alpha \beta}$$

Fermion mass effect

