Quantum thermodynamics of nonequilibrium processes in lattice gauge theories

Greeshma Shivali Oruganti University of Maryland, College Park

Based on

Quantum thermodynamics of nonequilibrium processes in lattice gauge theories, Zohreh Davoudi, Christopher Jarzynski, Niklas Mueller, GO, Connor Powers, and Nicole Yunger Halpern Phys. Rev. Lett. 133, 250402 (2024)

+ arXiv:2502.19418 [quant-ph] (2025)

Are the three fields related?

Quantum simulations

Landi, et al., Phys. Rev. A 101, 042106 (2020) Li, et al., Phys. Rev. B 103, 104306 (2021) Aamir, et al., Nat. Phys. (2025)

Lattice gauge theories

Quantum thermodynamics

Are the three fields related?

Outline

PART-1: Strong-coupling quantum thermodynamics and its relation to quantum information science

PART-2: Work, heat, and the second law for quantum quench processes of strongly coupled systems

PART-3: Applications to \mathbb{Z}_2 lattice gauge theory

Quantum thermodynamics of nonequilibrium processes in lattice gauge theories, Davoudi, (G.O) et al. Phys. Rev. Lett. 133, 250402 (2024) + arXiv:2502.19418 [quant-ph] (2025)

Outline

PART-1: Strong-coupling quantum thermodynamics and its relation to quantum information science

PART-2: Work, heat, and the second law for quantum quench processes of strongly coupled systems

PART-3: Applications to \mathbb{Z}_2 lattice gauge theory

Quantum thermodynamics of nonequilibrium processes in lattice gauge theories, Davoudi, (G.O) et al. Phys. Rev. Lett. 133, 250402 (2024) + arXiv:2502.19418 [quant-ph] (2025)

Setup

Hamiltonian: $H_{S \cup R} = H_S + H_R + V_{S \cup R}$

General state of $S \cup R$: $\rho_{S \cup R}$

General state of S: $\rho_S = \operatorname{Tr}_R \left[\rho_{S \cup R} \right]$

Setup

Hamiltonian: $H_{S \cup R} = H_S + H_R + V_{S \cup R}$

General state of $S \cup R$: $\rho_{S \cup R}$

General state of $S: \rho_S = \operatorname{Tr}_R \left[\rho_{S \cup R} \right]$

Thermal equilibrium state of $S \cup R$: $\pi_{S \cup R} = \frac{e^{-\beta H_{S \cup R}}}{Z_{S \cup R}}$

Equilibrium state of S : $\pi_S = \operatorname{Tr}_R \left[\pi_{S \cup R} \right] \neq \frac{e^{-\beta H_S}}{Z_S}$

Weak-coupling vs strong-coupling thermodynamics

$$\hat{H}_{S \cup R} = \hat{H}_S + \hat{H}_R + \hat{V}_{S \cup R}$$

Weak Coupling^{1,2}

• $\hat{V}_{S \cup R} \approx 0$

•
$$U_S = \operatorname{Tr}_S \left[\hat{H}_S \ \hat{\rho}_S \right], \ \pi_S^0 = \frac{e^{-\beta H_S}}{Z_S}$$

ullet U_S defined for classical and quantum systems

- 1. Rivas, Phys. Rev. Lett. 124, 160601 (2020)
- 2. Strasberg & Esposito, Phys. Rev. E 99, 012120 (2019)

Weak-coupling vs strong-coupling thermodynamics

$$\hat{H}_{S \cup R} = \hat{H}_S + \hat{H}_R + \hat{V}_{S \cup R}$$

Weak Coupling^{1,2}

• $\hat{V}_{S \cup R} \approx 0$

$$U_S = \operatorname{Tr}_S \left[\hat{H}_S \ \hat{\rho}_S \right], \ \pi_S^0 = \frac{e^{-\beta H_S}}{Z_S}$$

ullet U_S defined for classical and quantum systems

Strong Coupling²⁻⁸

•
$$\langle \hat{V}_{S \cup R} \rangle \sim \text{Tr}_S [\hat{H}_S \hat{\rho}_S]$$

•
$$U_S \neq \operatorname{Tr}_S [\hat{H}_S \hat{\rho}_S], \, \pi_S = \operatorname{Tr}_R [\pi_{S \cup R}] \neq \frac{e^{-\beta H_S}}{Z_S}$$

ullet U_S defined for classical systems (multiple frameworks)

- 1. Rivas, Phys. Rev. Lett. 124, 160601 (2020)
- 2. Strasberg & Esposito, Phys. Rev. E 99, 012120 (2019)
- 3. Anto-Sztrikacs et. al. PRX Quantum 4, 020307 (2023)
- 4. Miller & Anders Phys. Rev. E 95, 062123 (2017)
- 5. Jarzynski, Phys. Rev. X 7, 011008 (2017)

- 6. Seifert, *Phys.* Rev. Lett. 116, 020601 (2016)
- 7. Miller. & Anders. Phys. Rev. E 95, 062123 (2017)
- 8. Work and heat exchanged during sudden quenches of strongly coupled quantum systems, Davoudi, (G.O) *et al.* arXiv:2502.19418 [quant-ph] (2025)

$$\pi_S = \operatorname{Tr}_R \left[\pi_{S \cup R} \right] = \frac{e^{-\beta H_S^*}}{Z_S^*}$$

$$H_S^* := -\frac{1}{\beta} \ln \frac{\mathrm{Tr}_R[e^{-\beta H_{S \cup R}}]}{\mathrm{Tr}_R[e^{-\beta H_R}]} \quad \text{Hamiltonian of mean force}$$

 H_{S}^{st} captures the effects of $V_{S\cup R}$ on the equilibrium state of S

$$\pi_S = \operatorname{Tr}_R \left[\pi_{S \cup R} \right] = \frac{e^{-\beta H_S^*}}{Z_S^*}$$

$$H_S^* := -\frac{1}{\beta} \ln \frac{\mathrm{Tr}_R[e^{-\beta H_{S \cup R}}]}{\mathrm{Tr}_R[e^{-\beta H_R}]} \quad \text{Hamiltonian of mean force}$$

 H_{S}^{st} captures the effects of $V_{S\cup R}$ on the equilibrium state of S

Internal energy of the system: $U_S := \operatorname{Tr}_S \left[H_S^* \ \rho_S \right]$

Defined for equilibrium and non-equilibrium states of S.

Measured on system's degrees of freedom.

$$H_S^* := -\frac{1}{\beta} \ln \frac{\operatorname{Tr}_R[e^{-\beta H_{S \cup R}}]}{\operatorname{Tr}_R[e^{-\beta H_R}]}$$

$$U_S := \operatorname{Tr}_S[H_S^* \rho_S]$$

$$F_S := -\frac{1}{\beta} \ln Z_S^*$$
, $Z_S^* = \text{Tr}_S[e^{-\beta H_S^*}]$

$$H_S^* := -\frac{1}{\beta} \ln \frac{\operatorname{Tr}_R[e^{-\beta H_{S \cup R}}]}{\operatorname{Tr}_R[e^{-\beta H_R}]}$$

$$U_S := \operatorname{Tr}_S \left[H_S^* \ \rho_S \right]$$

$$F_S := -\frac{1}{\beta} \ln Z_S^*, \quad Z_S^* = \operatorname{Tr}_S[e^{-\beta H_S^*}]$$

For equilibrium states: $F_S = U_S - \beta^{-1} \mathcal{S}$

$$\mathcal{S} = -\operatorname{Tr}_{S} \left[\pi_{S} \ln \pi_{S} \right]$$

Bridge between QTD and QIS

Measure internal energy via the Hamiltonian of mean force:
$$H_S^* := -\frac{1}{\beta} \ln \frac{\mathrm{Tr}_R[e^{-\beta H_{S \cup R}}]}{\mathrm{Tr}_R[e^{-\beta H_R}]}$$

Entanglement Hamiltonian: $H_{\rm ent} := -\ln \rho_S$

Bridge between QTD and QIS

Measure internal energy via the Hamiltonian of mean force:
$$H_S^* := -\frac{1}{\beta} \ln \frac{\mathrm{Tr}_R[e^{-\beta H_{S \cup R}}]}{\mathrm{Tr}_R[e^{-\beta H_R}]}$$

Entanglement Hamiltonian: $H_{\rm ent} := -\ln \rho_S$

- Characterizing topological order. See e.g. H. Li, F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008)
- As tool to investigate thermalization in LGTs. E.g. N. Mueller, T. V. Zache, R. Ott, Phys. Rev. Lett. 129, 011601 (2022)
- Used in quantum state tomography. E.g. M. Dalmonte, V. Eisler, M. Falconi, B. Vermersch, ANNALEN DER PHYSIK 2022, 534, 2200064.

Bridge between QTD and QIS

Measure internal energy via the Hamiltonian of mean force:
$$H_S^* := -\frac{1}{\beta} \ln \frac{\mathrm{Tr}_R[e^{-\beta H_{S \cup R}}]}{\mathrm{Tr}_R[e^{-\beta H_R}]}$$

Entanglement Hamiltonian: $H_{\mathrm{ent}} := -\ln \rho_S$

For a system equilibrium state
$$\pi_S$$
, $H_{\rm ent}$ and H_S^* are related: $H_S^* = \frac{1}{\beta} H_{\rm ent} + F_S$

PART-1: Strong-coupling quantum thermodynamics and its relation to quantum information science

PART-2: Work, heat, and the second law for quantum quench processes of strongly coupled systems

PART-3: Applications to \mathbb{Z}_2 lattice gauge theory

First law of Thermodynamics $\Delta U_S = W + Q$

Work and heat exchanged during sudden quenches of strongly coupled quantum systems, Davoudi, (G.O) et al. arXiv:2502.19418 [quant-ph] (2025) 23

Experimentally accessible thermodynamic quantity

For a system equilibrium state π_S , $H_{\rm ent}$ and H_S^* are related: $H_S^* = \frac{1}{\beta} H_{\rm ent} + F_S$.

$$W = \operatorname{Tr} \left[\pi_S^{i} \left(H_S^{*f} - H_S^{*i} \right) \right]$$

$$W = \frac{1}{\beta} \operatorname{Tr} \left[\pi_S^{i} \left(H_{\text{ent},S}^{f} - H_{\text{ent},S}^{i} \right) \right] + \Delta F_S$$

Experimentally accessible thermodynamic quantity

For a system equilibrium state π_S , $H_{\rm ent}$ and H_S^* are related: $H_S^* = \frac{1}{\beta} H_{\rm ent} + F_S$.

$$W = \operatorname{Tr} \left[\pi_S^{i} \left(H_S^{*f} - H_S^{*i} \right) \right]$$

$$W = \frac{1}{\beta} \operatorname{Tr} \left[\pi_S^{i} \left(H_{\text{ent},S}^{f} - H_{\text{ent},S}^{i} \right) \right] + \Delta F_S$$

Measure
$$W_{\rm diss}=W-\Delta F_S=rac{1}{\beta}{
m Tr}\left[\pi_S^{
m i} \left(H_{{
m ent},S}^{
m f}-H_{{
m ent},S}^{
m i}
ight)
ight]$$
 to verify the second law.

This connection between QTD and QIS allows us to potentially verify QTD on quantum simulators.

PART-1: Strong-coupling quantum thermodynamics and its relation to quantum information science

PART-2: Work, heat, and the second law for quantum quench processes of strongly coupled systems

PART-3: Applications to \mathbb{Z}_2 lattice gauge theory

- Lattice gauge theories (LGTs) help study Quantum Chromodynamics (QCD) non-perturbatively.
- Hamiltonian formulations of LGTs are best suited for quantum simulations.

- Lattice gauge theories (LGTs) help study Quantum Chromodynamics (QCD) non-perturbatively.
- Hamiltonian formulations of LGTs are best suited for quantum simulations.
- Defining feature of lattice gauge theories: Gauss's laws. They need to be implemented explicitly in Hamiltonian formulations.

- Lattice gauge theories (LGTs) help study Quantum Chromodynamics (QCD) non-perturbatively.
- Hamiltonian formulations of LGTs are best suited for quantum simulations.
- Defining feature of lattice gauge theories: Gauss's laws. They need to be implemented explicitly in Hamiltonian formulations.

Hilbert space is split into two subspaces - the physical subspace ($\mathscr{H}_{\rm phys}$) contains states that satisfy the Gauss law constraints.

Wilson, Phys. Rev. D 10, 2445 (1974). Kogut & Susskind, Phys. Rev. D 11, 395 (1975). Kogut, Rev. Mod. Phys. 51, 659 (1979). Bauer, et al., Nat Rev. Phys. 5, 420-432 (2023).

Hilbert space is split into two subspaces - the physical subspace ($\mathcal{H}_{\rm phys}$) contains states that satisfy the Gauss law constraints.

- Restrict dynamics by penalizing transitions to "unphysical states". Leads to large $V_{S\cup R}$ in $H_S+H_R+V_{S\cup R}.$
- ullet Large $V_{S\cup R} \Longrightarrow$ Strong-coupling quantum thermodynamics
- Thermodynamic properties of LGTs have previously been computed in equilibrium and not under the framework of quantum thermodynamics. [Bazavov, et. al. arXiv:1904.09951]

Example: \mathbb{Z}_2 lattice gauge theory

$$H_{S\cup R} = -t\sum_{\mathbf{n}=0}^{\mathbf{N}-1} (\sigma_{\mathbf{n}}^{+} \tilde{\sigma}_{\mathbf{n}}^{x} \sigma_{\mathbf{n}+1}^{-} + \mathbf{h.c.}) - \epsilon \sum_{\mathbf{n}=0}^{\mathbf{N}-1} \tilde{\sigma}_{\mathbf{n}}^{\mathbf{z}} + \mathbf{m} \sum_{\mathbf{n}=0}^{\mathbf{N}-1} (-1)^{\mathbf{n}} \sigma_{\mathbf{n}}^{+} \sigma_{\mathbf{n}}^{-} - \mu \sum_{\mathbf{n}=0}^{\mathbf{N}-1} \sigma_{\mathbf{n}}^{+} \sigma_{\mathbf{n}}^{-}$$

$$\text{Matter hopping terms} \qquad \text{Gauge field} \qquad \text{Staggered mass} \qquad \text{Chemical Potential}$$

$$= H_S + H_R + V_{S \cup R}$$

Quench of \mathbb{Z}_2 lattice gauge theory: Dissipated work

$$H_S(t) = H_{S, \text{ hopping}} + H_{S, g} + H_{S, m} + H_{S, \mu}(t)$$
 $\mu_i = 0 \rightarrow \mu_f \text{ within } H_S \text{ at } t = 0$

Phase transition in \mathbb{Z}_2 lattice gauge theory

Chiral condensate as an order parameter: $\Sigma = \langle \bar{\Psi}\Psi \rangle = \frac{1}{N_S} \sum_{n=0}^{N_S-1} (-1)^n \langle \sigma_j^+ \sigma_j^- \rangle$

Qualitative changes in the behavior of dissipated work around the chiral phase transition.

Summary and outlook

- We defined thermodynamics quantities for a strongly-coupled open quantum system.
- For quench processes, work and heat analytically satisfy the first two laws of thermodynamics.
- A bridge between quantum information and quantum thermodynamics, potentially allows us to verify our framework on a quantum simulator.
- Lattice gauge theories can be cast in the language of strong-coupling quantum thermodynamics.
- We discovered a qualitative relationship between thermodynamic quantities and phase transitions for a (1+1)D \mathbb{Z}_2 LGT coupled to spin- $\frac{1}{2}$ hardcore bosons.
- Experimentally measure work and heat for LGTs on a quantum simulator.
- Extend the framework to other non-quench, non-equilibrium process in high-energy physics.

Zohreh Davoudi

Chris Jarzynski

Niklas Mueller

Connor Powers

Nicole Yunger Halpern

Summary and outlook

- We defined thermodynamics quantities for a strongly-coupled open quantum system.
- For quench processes, work and heat analytically satisfy the first two laws of thermodynamics.
- A bridge between quantum information and quantum thermodynamics, potentially allows us to verify our framework on a quantum simulator.
- Lattice gauge theories can be cast in the language of strong-coupling quantum thermodynamics.
- We discovered a qualitative relationship between thermodynamic quantities and phase transitions for a (1+1)D \mathbb{Z}_2 LGT coupled to spin- $\frac{1}{2}$ hardcore bosons.
- Experimentally measure work and heat for LGTs on a quantum simulator.
- Extend the framework to other non-quench, non-equilibrium process in high-energy physics.

Appendix

Weak-coupling vs strong-coupling thermodynamics

$$\hat{H}_{S \cup R} = \hat{H}_S + \hat{H}_R + \hat{V}_{S \cup R}$$

Weak Coupling^{1,2}

• $\hat{V}_{S \cup R} \approx 0$

•
$$U_S = \operatorname{Tr}_S \left[\hat{H}_S \ \hat{\rho}_S \right], \ \pi_S^0 = \frac{e^{-\beta H_S}}{Z_S}$$

ullet U_S defined for classical and quantum systems

- 1. Rivas, Phys. Rev. Lett. 124, 160601 (2020)
- 2. Strasberg & Esposito, Phys. Rev. E 99, 012120 (2019)

Gauss's laws in LGTs

Gauss's laws in LGTs

Gauss's Law
$$|\uparrow\uparrow\rangle$$
, $|\uparrow\downarrow\rangle$, $|\downarrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$ $\frac{\lim k \to \infty}{|\uparrow\uparrow\rangle}$, $|\downarrow\downarrow\rangle$

Gauss's laws in LGTs

Gauss's Law
$$|\uparrow\uparrow\rangle$$
, $|\uparrow\downarrow\rangle$, $|\downarrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$ $\frac{\lim k \to \infty}{}$ $|\uparrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$

Large $V_{S \cup R} \Longrightarrow \langle V_{S \cup R} \rangle \sim \langle H_S \rangle$, interactions are non-negligible.

Example: \mathbb{Z}_2 lattice gauge theory

$$H_{S \cup R} = -t \sum_{n=0}^{N-1} (\sigma_n^+ \tilde{\sigma}_n^x \sigma_{n+1}^- + h.c.) - \epsilon \sum_{n=0}^{N-1} \tilde{\sigma}_n^z + m \sum_{n=0}^{N-1} (-1)^n \sigma_n^+ \sigma_n^- - \mu \sum_{n=0}^{N-1} \sigma_n^+ \sigma_n^-$$

Matter hopping terms

$$= H_S + H_R + V_{S \cup R}$$

Example: \mathbb{Z}_2 lattice gauge theory

$$H_{S \cup R} = -t \sum_{n=0}^{N-1} (\sigma_n^+ \tilde{\sigma}_n^x \sigma_{n+1}^- + h.c.) - \epsilon \sum_{n=0}^{N-1} \tilde{\sigma}_n^z + m \sum_{n=0}^{N-1} (-1)^n \sigma_n^+ \sigma_n^- - \mu \sum_{n=0}^{N-1} \sigma_n^+ \sigma_n^-$$

Gauge field

$$= H_S + H_R + V_{S \cup R}$$

Example: \mathbb{Z}_2 lattice gauge theory

$$H_{S \cup R} = -t \sum_{n=0}^{N-1} (\sigma_n^+ \tilde{\sigma}_n^x \sigma_{n+1}^- + h.c.) - \epsilon \sum_{n=0}^{N-1} \tilde{\sigma}_n^z + m \sum_{n=0}^{N-1} (-1)^n \sigma_n^+ \sigma_n^- - \mu \sum_{n=0}^{N-1} \sigma_n^+ \sigma_n^-$$

Staggered mass

Chemical Potential

$$= H_S + H_R + V_{S \cup R}$$

General thermodynamic process

Work: Change in internal energy by externally varying a parameter of $\hat{H}_{S \cup R}$

Heat: Change in internal energy associated with the change in S's state

First law: $\Delta U_S = W + Q$

Proof of Second Law

$$\begin{split} \beta(W - \Delta F_S) &= \beta \mathrm{Tr}_S \ [\hat{\pi}_S^{\mathrm{i}} \ (\hat{H}_S^{\mathrm{*f}} - \hat{H}_S^{\mathrm{*i}})] - (F_S^{\mathrm{f}} - F_S^{\mathrm{i}}) \\ &= \mathrm{Tr}_S \ [(\beta \ (\hat{H}_S^{\mathrm{*f}} - F_S^{\mathrm{f}}) - \beta \ (\hat{H}_S^{\mathrm{*i}} - F_S^{\mathrm{i}})) \ \hat{\pi}_S^{\mathrm{i}}] \\ &= \mathrm{Tr}_S \ [(\ln \hat{\pi}_S^{\mathrm{i}} - \ln \hat{\pi}_S^{\mathrm{f}}) \ \hat{\pi}_S^{\mathrm{i}}] \\ &\geq 0 \end{split}$$

Second Law in terms of Heat and Entropy

$$S = \beta(U_S - F_S)$$

$$\Delta S = \beta(\Delta U_S - \Delta F_S)$$

$$\Delta S = \beta(\Delta U_S - \Delta F_S)$$

$$\beta^{-1} \Delta S = \Delta U_S - \Delta F_S$$

$$\beta^{-1} \Delta S = W + Q - \Delta F_S$$

$$\beta^{-1} \Delta S - Q = W - \Delta F_S$$

$$\beta^{-1} \Delta S - Q \ge 0$$

$$Q \le \beta^{-1} \Delta S$$

Different Internal Energy Definitions

$U_{\rm tot}$

$$U_{\text{tot}} = U_{S \cup R} - U_R^0$$

Measured on $S \cup R$

Converges to ${\rm Tr}_S [\hat{H}_S \hat{\pi}_S^0]$ when $S \cup R$ is in a Gibbs state and $\hat{V}_{S \cup R} \sim 0$

$$U_{H^*}$$

$$U_{H^*} = \operatorname{Tr}_S \left[\hat{H}_S^* \, \hat{\rho}_S \right]$$

Measured on S

Converges to ${\rm Tr}_S [\hat{H}_S \, \rho_S]$ when $\hat{V}_{SUR} \sim 0$

$$U_{E^*}$$

$$U_{E^*} = \operatorname{Tr}_S \left[\hat{E}_S^* \, \hat{\rho}_S \right]$$

Measured on S

Converges to ${\rm Tr}_S [\hat{H}_S \, \rho_S]$ when $\hat{V}_{S \cup R} \sim 0$

Jarzynski, C. Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems. *Phys. Rev. X* **7**, 011008 (2017). Seifert, U. First and Second Law of Thermodynamics at Strong Coupling. *Phys. Rev. Lett.* **116**, 020601 (2016). Miller, H. J. D. & Anders, J. Entropy production and time asymmetry in the presence of strong interactions. *Phys. Rev. E* **95**, 062123 (2017).

Quench Process 1: System Quench

Quench Process 1: System Quench

 $Q_{\mathrm{tot}} \leq eta^{-1} \Delta S_{\mathrm{tot}}$, $Q_{H^*} \leq eta^{-1} \Delta S_{H^*}$, and, $Q_{E^*} \nleq \Delta S_{E^*}$

50

Quench Process 2: Interaction Quench

 $Q = U_S(\infty) - U_S(0^+)$

Quench Process 2: Interaction Quench

 $Q_{\mathrm{tot}} \leq \beta^{-1} \Delta S_{\mathrm{tot}}$, $Q_{H^*} \leq \beta^{-1} \Delta S_{H^*}$, and, $Q_{E^*} \nleq \Delta S_{E^*}$

Proof of EH ~ HMF

$$H_S^* = -\frac{1}{\beta} \ln \frac{\operatorname{Tr}_R[e^{-\beta H_{S \cup R}}]}{\operatorname{Tr}_R[e^{-\beta H_R}]}$$

$$= -\frac{1}{\beta} \ln \pi_S \frac{Z_{S \cup R}}{Z_R}$$

$$= \frac{1}{\beta} H_S^{\text{ent}} + F_S$$

$$W_{\text{diss}} = W - \Delta F_S$$

$$= \frac{1}{\beta} \text{Tr} \left[\rho_S^{i} (H_{\text{ent},S}^f - H_{\text{ent},S}^i) \right]$$

Quench of \mathbb{Z}_2 Lattice Gauge Theory: Work and Heat

Hamiltonian of the system:

$$H_S(t) = H_{S, \text{ hopping}} + H_{S, g} + H_{S, m} + H_{S, \mu}(t)$$

Chemical Potential quench: $\mu_i = 0 \to \mu_f$ within H_S at t=0

Calculate thermodynamic quantities: $W, Q, \Delta F_S$, and, $\Delta \mathcal{S}$

What happens if we use weak-coupling thermodynamics?

Testing Numerical Stability

Real exponentials of Hamiltonians can lead to matrices with very large or very small absolute values of eigenvalues at sufficiently large β .

Smooth functions of β indicate lack of instabilities.

