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Initial states in high-energy collisions are wavepackets I

Wavepackets can be used to study transport properties” I
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Quantum advantage expected in simulations of real-time dynamics l




Gaussian wavepackets saturate AxAp > h/2

pwp) = 3 e (k0T |y 0
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Gaussian wavepackets saturate AxAp > h/2

Ywp) = Ze_<k_k°) Sy DINEY
k

Yr) is the lowest-energy state with momentum k # O \




First, consider preparing |¥x) on a quantum computer




k) is always long-range entangled, even for
gapped systems with a finite correlation length [1]

[1] Gioia and Wang PRX 2022
[2] Haegeman et. al PRB 2012



k) is always long-range entangled, even for
gapped systems with a finite correlation length [1]

Quasiparticle ansatz in MPS [2]

‘wvac>: ___________________
‘wk>: IIIIIIIIIIIIIIIIIII + e_ik IIIIIIIIIIIIIIIIIII + 6_2”{ IIIIIIIIIIIIIIIIIII —+
Plane-wave structures forces the position of to be entangled

[1] Gioia and Wang PRX 2022
[2] Haegeman et. al PRB 2012



Strategy for preparing |¢x)

1. Apply quantum circuits that build the long-range O(L) entanglement

- Constant-depth with mid-circuit measurement and feedforward (MCM-FF)
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Strategy for preparing |¢x)

1. Apply quantum circuits that build the long-range O(L) entanglement

- Constant-depth with mid-circuit measurement and feedforward (MCM-FF)
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2. Apply quantum circuits that build the short-range O(&) entanglement

- Reformulate as an energy minimization problem. Optimize parameterized
quantum circuits



Our method is widely applicable

1 4+ 1D Ising field theory 2+ 1D Ising/ﬁeld theory

1 4+ 1D scalar field theory 1+1D U(1) LGT

1+1D Luttinger liquid |




Our method is widely applicable

1 + 1D Ising field theory

Focus on 1+1D Ising field theory l




Ising field theory

N\
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Field theory limit: g, — 1, g, — 0 but




Ising field theory

. . g —1
Field theory limit: g, — 1, g, — 0 but T is fixed
8
g, =0 gz/(gas—.l)ZOO

Interacting and non-integrable

i
free fermion FEs theoryx
*Zamolodchikov 1989



Building the long-range entanglement in (¢x)

Initialize: |k) = [000...001) + €**|000...010) + e***|000...100) + ...

Entanglement between positions of in|Yk)

!

Entanglement between positions of in|k)

*Dur et. al 2000



Building the long-range entanglement in (¢x)

Initialize: |k) = [000...001) + €**|000...010) + e***|000...100) + ...

Entanglement between positions of in|Yk)
Entanglement between positions of in|k)

k) has the same structure as the W-state that is well studied in QIS*

*Dur et. al 2000



Generalize existing W-state preparation circuits to |k) = [000...001) + €"*]000...010) + ...

1D connectivity[1] All-to-all connectivity[1] 1D connectivity + MCM-FF[2]
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[1] Cruz et. al 2018
[2] Piroli et. al 2024



Strategy for preparing |¢x)

1. Apply quantum circuits that build the long-range O(L) entanglement

- Constant-depth with mid-circuit measurement and feedforward ( FF)
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2. Apply quantum circuits that build the short-range O(&) entanglement

- Reformulate as an energy minimization problem. Optimize parameterized
quantum circuits



Structure of the Hamiltonian
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Translational invariance implies the Hamiltonian is block-diagonal in momentum space \




Structure of the Hamiltonian

10

hatututnt ; The vacuum is the ground state of the k = O block. \

| y,.) are the lowest-energy
states of the kK # 0 blocks

Translational invariance implies the Hamiltonian is block-diagonal in momentum space \
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Minimizing energy within a momentum block

1. Initialize |k) = 000...001) + €*]000...010) + e***]000...100) + ...

2. Minimize the energy using translationally invariant circuits 1@ [ = ]0®)




Minimizing energy within a momentum block

1. Initialize |k) = 000...001) + €*]000...010) + e***]000...100) + ...

2. Minimize the energy using translationally invariant circuits 1@ [ = ]0®)

V) = U(bs)lk)
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Minimizing energy within a momentum block

1. Initialize |k) = 000...001) + €*]000...010) + e***]000...100) + ...

2. Minimize the energy using translationally invariant circuits

L1 1t 1 1 1 1 |
=
|

L1 1t 1 1 1 1 1
=

—

V) = U(bs)lk)

A similar strategy can be used to prepare wavepackets \




Wavepacket preparation

1. Initialize |W (ko)) = » e *F)"/7uik) = ¢|00...01) + ¢1]00..10) + ...
k



12

Wavepacket preparation

1. Initialize |W (ko)) = » e *F)"/7uik) = ¢|00...01) + ¢1]00..10) + ...
k

2. Minimize the energy using translationally invariant & real circuits
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Wavepacket preparation

1. Initialize |W (ko)) = » e *F)"/7uik) = ¢|00...01) + ¢1]00..10) + ...
k

2. Minimize the energy using translationally invariant & real circuits
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Statevector simulations on L = 28 qubits
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Energy minimization using ADAPT-VQE* maximizes the overlap of |¥ansatz) with [¥wp)

*Grimsely, Barnes, Economou, Mayhall (2019)
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Wavepacket preparation on 100+ qubits

‘¢ansatz> on L = 28

0.3 ® |Yansatz) on L =100 &

v U

S
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Circuits that minimize the energy and prepare wavepackets

are determined on large lattices using a MPS circuit simulator
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Wavepacket preparation on 100+ qubits

Next talk, Nikita will use these circuits to prepare wavepackets and

simulate scattering on 104 qubits of IBM’s quantum computers
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Summary

« Momentum eigenstates have long-range entanglement that must be
considered when preparing wavepackets on a quantum computer

* This entanglement is also present in the W state that can be prepared In
constant depth using MCM-FF

» After building short-range correlations by optimizing variational guantum
circuit to minimize the energy
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Questions

Is the long-range entanglement of all gapped systems

equivalent to the W state under local operations?

Will wavepacket preparation|[1,2,3] ever be the bottlekneck”

d
Wavepacket size: Nywp ~ (—) Max evolution time: tmax ~ constant

1] Chai et. al 2025
2] Davoudi, Hsieh, Kadam 2025
3] Jordan, Lee, Preskill 2011
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Thank you for listening!

Nikita Zemlevskiy Marc llla John Preskill

For more detalls see our paper on arxiv: 2505.03111
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