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Motivation

Studying the properties of strongly coupled theories from first principles is necessary
to fully understand the Standard Model

Rich phenomena of non-perturbative quantum field theories is a profitable place to look
for new answers to the big questions
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Motivation

Studying the properties of strongly coupled theories from first principles is necessary
to fully understand the Standard Model

Rich phenomena of non-perturbative quantum field theories is a profitable place to look
for new answers to the big questions

Quantum Chromodynamics (QCD)

* Provides precise and quantitative description of the
strong nuclear force over an broad range of energies

* Gives rise to complex array of emergent phenomena that
cannot be identified from underlying degrees of freedom

* Ab-initio calculations crucial for comparing theoretical
predictions of the Standard Model to experimental results
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Motivation

Studying the properties of strongly coupled theories from first principles is necessary
to fully understand the Standard Model

Rich phenomena of non-perturbative quantum field theories is a profitable place to look
for new answers to the big questions

— | 9
. > 200F m ~ 3
Quantum Chromodynamics (QCD) s [
= .
* Provides precise and quantitative description of the g r
strong nuclear force over an broad range of energies © l "
8 1(!)" o?;
. . = y £ N e W
* Gives rise to complex array of emergent phenomena that @ A K. & ¥
cannot be identified from underlying degrees of freedom ¢ B Os
) , " - ~ Color Super-
o _ _ _ _ : o “  » Neutron ste (;“ - conductor?
* Ab-initio calculations crucial for comparing theoretical

1
predictions of the Standard Model to experimental results Nuclel Net Baryon Density
Proposed QCD Phase Diagram

[%@ D.M. Grabowska Explorations of Fully Gauge-Fixed SU(2)



Phys Rev D 11, 395 (1975)

Hamiltonian Lattice Gauge Theory, Abelian

Quantum simulations utilize Hamiltonian formulations

» Continuous time, but discrete space
- Use Weyl Gauge (Ay = 0)

 Can be derived from Wilson’s action
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Hamiltonian Lattice Gauge Theory, Abelian

® - - - - - -- - - - - — -
Quantum simulations utilize Hamiltonian formulations
» Continuous time, but discrete space f’p
- Use Weyl Gauge (Ay = 0) ®
 Can be derived from Wilson’s action |
E, |
Kogut-Susskind Hamiltonian Uy ‘I
o9
1 ) 1 ; |
H=——8* X EEi+— ), Tr<2I—Pp—Pp> :
£ € links PE plaquettes |
® ® ® o
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Hamiltonian Lattice Gauge Theory, Abelian

® - - - - - -- - - - - — -
Quantum simulations utilize Hamiltonian formulations
» Continuous time, but discrete space f’p
- Use Weyl Gauge (Ay = 0) ®
 Can be derived from Wilson’s action |
E, |
Kogut-Susskind Hamiltonian Uy ‘I
o9
1 ) 1 ; |
H=——8* X EEi+— ), Tr<2I—Pp—Pp> :
£ € links PE plaquettes |
® ® ® o

 Commutation relations inform how operators map onto qubits

_Ebﬂ, Ul/w_ — Uf5ff’
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Hamiltonian Lattice Gauge Theory, Abelian

®------- ®-------
Quantum simulations utilize Hamiltonian formulations
» Continuous time, but discrete space f’p
- Use Weyl Gauge (Ay = 0) ®
» Can be derived from Wilson’s action i
E, |
Kogut-Susskind Hamiltonian Uy ‘I
® ® ® ®

 Commutation relations inform how operators map onto qubits

These define the theory and
therefore the circuit
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Hamiltonian Lattice Gauge Theory, Abelian

®------- ®------- @ - ------ °
Kogut-Susskind Hamiltonian |

H_Z 8 2 Eoby+— 2 r<I_Pp_Pp> ® ¢ ¢ *

r € links pE plaquettes |

« Commutation relations inform how operators map onto qubits :
A AT . ® ® ® o

Ep,Up| = Uspp :

» Precise mapping will depend on choice of BASIS :
® ® ® ®
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Hamiltonian Lattice Gauge Theory, Abelian

®------- ®------- @ - ------ °
Kogut-Susskind Hamiltonian |

H—l' 2 EE : Tr(2I-P,— P :
=2a |88 X Bkt X (21-p, -7} * ' ¢

r € links pE plaquettes |

« Commutation relations inform how operators map onto qubits :
A A . : A ® ® ® o

E.0.|=0.5,, Indicates that Uis |

A i raising operator |

» Precise mapping will depend on choice of BASIS :
® ® ® ®

EzZe\e)(e\ lA]=Z\€+1)(€\

Operators defined in the electric basis
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Hamiltonian Lattice Gauge Theory, Abelian

Kogut-Susskind Hamiltonian

1

H=—
2a

pE plaquettes

1
2
& Y EE+— > Tr(2-P,-P))
£ € links J

« Commutation relations inform how operators map onto qubits

E,U,

— Uféff'

Indicates that lA] IS
raising operator

* Precise mapping will depend on choice of BASIS

E = Ze\e)(e\

Operators defined in the electric basis

U= ) |e+ 1)l

Phys Rev D 11, 395 (1975)
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Hamiltonian Lattice Gauge Theory, Abelian

* Precise mapping will depend on choice of BASIS

®- - <---0---P>---@-->p--0

Kogut-Susskind Hamiltonian |

Yi-1 Al+1) |0) \ 4

1 1 |

— | o2 _ _p _ pt + 1 —1 ~1 |
H=——\g® Y, EE+— Y Tr(2-P,-F)) LI+ 1) -,
r € links pE plaquettes |

. o . Al+1) 0) 4

« Commutation relations inform how operators map onto qubits |
_ _ X 0) D :

E. U =0.s,, Indicates that U is ¢ ?

RS cuee raising operator L

|+ 2) YI[-1) YI-1) X

| — 1) |+ 1) |+ 2)
< ® > ® >r

EzZe\e)(e\ lA]=Z\€+1)(€\

Action of plaquette on a given state

Operators defined in the electric basis
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Hamiltonian Lattice Gauge Theory, Abelian

®- - <-——-0- - > --0-->p---0

Kogut-Susskind Hamiltonian |

YIi-1) Al+1) |0) \ 4

1 1 |

— |52 _ _p _ pft +1 10) _1 |
H=o-|g? Y EEt— 3 T (21 P, Pp> | R LA TS

r € links pE plaquettes i |

| | | | Al+1) | —1) A

« Commutation relations inform how operators map onto qubits | |
_ _ X 0) -1

E. U =0.s,, Indicates that U is ¢ < ?

RS cuee raising operator L

|+ 2) YI[-1) YI-1) |

* Precise mapping will depend on choice of BASIS 0
| — 1) |+ 1) |+2)

< @ > @ >>—0

EzZe\e)(e\ lA]=Z\€+1)(€\

Action of plaquette on a given state

Operators defined in the electric basis
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Hamiltonian Lattice Gauge Theory, SU(N) Version

General Idea: Similar to Abelian, but electric and gauge link operators carry color indices

1 1
_ 2 ara _ _ pfT
H=—1g" } EfE; +— ) Tr(21 P, Pp)
€ links pE plaquettes
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Hamiltonian Lattice Gauge Theory, SU(N) Version

General Idea: Similar to Abelian, but electric and gauge link operators carry color indices

1 1
_ 2 ara _ _ pt
H=—1g" } EfE; +— ) Tr(21 P, Pp)
€ links pE plaquettes

* Theory now contains both left and right electric operators

E, Uy E,
n |y ) n+e;

* Rotations of gauge link from left and right are generated by
left and right electric fields

lA/(n, e;) —> L2(n) l7(n, e;) L2(n + el-)T
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Hamiltonian Lattice Gauge Theory, SU(N) Version

General Idea: Similar to Abelian, but electric and gauge link operators carry color indices

| |
_ 2 ara 4 . _ pt
He=oo|g® ¥ EE+— 3 T (21- P, - )
r € links pE plaquettes
 Theory now contains both left and right electric operators * Each electric field has their own Lie algebra
A :  and commutation relations
E, Uy E,
A _ [Ea’l’;jb — _ fabcEAvc
n ‘ l//> n+ e, a 171 __qja 71j L L_ L
: EL, v.|=17"U,6 ° _
. . . : - i ra 1b - cabc 1c
* Rotations of gauge link from left and right are generated by : o EL, EL| = if "°E,
left and right electric fields [Efé, U] =0 T :
] mn' n'n A
2 2 T [E%, Eg — ()
Un,e;) — Q(n) U(n, e;) L(n + ¢)) _
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Hamiltonian Lattice Gauge Theory, SU(N) Version

General Idea: Similar to Abelian, but electric and gauge link operators carry color indices G\e‘o
% 1
09> 0"
e" .\
,6\,\‘ ,“\\)
@Y EE+— Y T (21- P, - ) A1 8
g’ W
£ € links pE plaquettes 50 a(\
oV
 Theory now contains both left and right electric operators * Each electric field has their own Lie algebra
A :  and commutation relations
e E“,Eb — _ jfabc fe
L [y ) n+e a fV ja [y [ sl o
EL, v | =17 U _
. . . : - N R > - rabc 1
* Rotations of gauge link from left and right are generated by : i N | E?e’ ER = If ER
left and right electric fields ' [Efé, v | =0 1° )
| mn n'n ~ A
2 2 0 [E%, Eg =0
Un,e;) — Q(n) U(n, e;) L(n + ¢)) _
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Simulating Lattice Gauge Theories

Three fundamental hurdles must be addressed to carry out quantum
simulations of lattice gauge theories Hamiltonian
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Simulating Lattice Gauge Theories

Three fundamental hurdles must be addressed to carry out quantum
simulations of lattice gauge theories Hamiltonian

A) Infinite-dimensional Hilbert
space must be truncated

* Finite-dimensional Hamiltonian needs to faithfully
capture desired physics

* Akin to UV reqularization of Lagrangian methods

B) Phenomenologically-relevant
gauge groups are continuous

» “Sampling” method needs to preserve gauge
structure of the theory
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Simulating Lattice Gauge Theories

Three fundamental hurdles must be addressed to carry out quantum
simulations of lattice gauge theories Hamiltonian

A) Infinite-dimensional Hilbert C) Gauss Law is not automatically satisfied

space must be truncated
- Gauss's law is the constraint associated with the A

* Finite-dimensional Hamiltonian needs to faithfully Lagrange multiplier
capture desired physics :
: * Naive Hilbert space is tensor product of different
* Akin to UV reqularization of Lagrangian methods charge sectors

B) Phenomenologically-relevant
gauge groups are continuous

» “Sampling” method needs to preserve gauge
structure of the theory
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Desired Properties of Formulations

Motivation: “Ildeal” formulation has these three properties

Gauge Invariant

Systematically Improvable Efficient for Fine Lattices
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Desired Properties of Formulations

Motivation: “Ildeal” formulation has these three properties

Gauge Invariant

Is it possible to achieve all three?

Systematically Improvable Efficient for Fine Lattices
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Desired Properties of Formulations

Motivation: “Ildeal” formulation has these three properties

Example Formulations
 Electric Basis®

Gauge Invariant

Is it possible to achieve all three?

Systematically Improvable Efficient for Fine Lattices
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Desired Properties of Formulations

Motivation: “Ildeal” formulation has these three properties

v

Gauge Invariant

Example Formulations

 Electric Basis®

Is it possible to achieve all three? x

v

Systematically Improvable Efficient for Fine Lattices
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** Phys. Rev. D 105, 114501 (2022)

DeSired Properties Of FormUIations and subsequent work

Motivation: “Ildeal” formulation has these three properties

Example Formulations /
 Electric Basis®

» Discrete Subgroups™

X v

Systematically Improvable Efficient for Fine Lattices

Gauge Invariant

Is it possible to achieve all three?
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Desired Properties of Formulations o Foous of this tak

Motivation: “Ildeal” formulation has these three properties

x(*)

Gauge Invariant

Example Formulations

» Electric Basis’
» Discrete Subgroups™
* Magnetic Basis™

J Is it possible to achieve all three?

v

Systematically Improvable Efficient for Fine Lattices
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Desired Properties of Formulations o Foous of this tak

Motivation: “Ildeal” formulation has these three properties

) &

Gauge Invariant

Example Formulations

» Electric Basis’
» Discrete Subgroups™
* Magnetic Basis™

J Is it possible to achieve all three?

v

Systematically Improvable Efficient for Fine Lattices

Unfortunately achieving this trifecta has proven quite challenging
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Fully Gauge-Fixing SU(2) in
2+1 and 3+1 Dimensions

Bauer, D’Andrea, Freytsis and DMG, Phys.Rev.D 109 (2024) 7, 074501

DMG, Kane and Bauer, Phys.Rev.D 111 (2025) 11, 114516
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Step One: Gauge-Fixing Procedure

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance
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Step One: Gauge-Fixing Procedure

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance

General Idea

Residual (spatial) gauge transformations
allow for some links to be set to identity
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Step One: Gauge-Fixing Procedure

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance

General Idea

Residual (spatial) gauge transformations
allow for some links to be set to identity

Not all gauge links can be set to the identity as gauge transformations affect neighboring links
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Phys. Rev. D 15, 1128 (1977)

Step One: Gauge-Fixing Procedure

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance

X - S S S—
General Idea: Maximal-tree procedure provides
a systematic method for determining which links
can be eliminated N T T N N N
* Tree links: unphysical links that can be set to
the Identlty % N — — —— () —
* Physical links: all other remaining links
X S - S - S—
X X e 3 e ) e ) s X
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Phys. Rev. D 15, 1128 (1977)

Step One: Gauge-Fixing Procedure

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance

X X=X
General Idea: Maximal-tree procedure provides
a systematic method for determining which links : : :
can be eliminated x X x x % X
* Tree links: unphysical links that can be set to :
the Identlty % Y S V S S S
* Physical links: all other remaining links
Wooooo oo e oo o oo Wooooo oo W ooooo o VEEEEEEE %
Tree link Physical link
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Step One: Gauge-Fixing Procedure

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance

X X=X
General Idea: Maximal-tree procedure provides
a systematic method for determining which links : : :
can be eliminated % X X x % %
* Tree links: unphysical links that can be set to :
the Identlty % Y S V S S S
 Physical links: all other remaining links
Still Incomplete: Procedure eliminates all local : : -
gauge transformations, but not global
., * All gauge transformations are carried out relative ng X Xoooooes Xoooooos Xeoooos Xoooooos X
N> otheorigin e —
Tree link Physical link
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SU(N)

Step One: Gauge-Fixing Procedure 241 and 3+1

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance

Non-Local Hamiltonian: Hamiltonian written in terms of new gauge-fixed variables is more complicated

1 1
H=— |3 ) EfE,f+—g2 ) Tr(zl Pp—Pp>

€ links pE plaguettes

(Y@ D.M. Grabowska Fully Gauge Fixing Lattice Gauge Hamiltonians



SU(N)

Step One: Gauge-Fixing Procedure 241 and 3+1

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance

Non-Local Hamiltonian: Hamiltonian written in terms of new gauge-fixed variables is more complicated

1 1
H=— |3 ) EfE,f+—g2 ) Tr<21 Pp—Pp>

€ links pE plaguettes

‘ Max. Tree Gauge Fixing

H=231 Y & - Y & | - 12 Y 1r| 1= []X6™@ | +h.c.
a - 2g4a .

KEp

‘%s> D.M. Grabowska Fully Gauge Fixing Lattice Gauge Hamiltonians



SU(N)

Step One: Gauge-Fixing Procedure 241 and 3+1

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance

Non-Local Hamiltonian: Hamiltonian written in terms of new gauge-fixed variables is more complicated

1 1
H=— |3 Y EE,+— ) Tr<21 Pp—Pp>

€ links pE plaguettes

¢ Max. Tree Gauge Fixing

H=g—a; Y o& - Y &l 2g2aZTr 1- ] X | +h.c.

k€e€t(l) KeEt (0 KEp

Commutation relations of new variables are canonical

(&40, X(k)] = TXW)S e [E4(0), X (k)] = XTS5
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SU(N)

Step One: Gauge-Fixing Procedure 241 and 3+1

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance

Non-Local Hamiltonian: Hamiltonian written in terms of new gauge-fixed variables is more complicated

1 1
H=— |3 Y EE,+— ) Tr<21 Pp—Pp>

€ links pE plaguettes

¢ Max. Tree Gauge Fixing

2

) ) 1 )
i_a; Z gg » &l - 2g2aZTr 1- [ [ X0 +h.c.

K€ 1. ( ket (0) P KEp

Commutation relations of new variables are canonical _ _
Big Question

(&40, X(K)] = T°X(W)5,  [E4(0), X(k)] = X()T S, How ‘bad’ is the non-locality?
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Bauer, D’Andrea, Freytsis and DMG,
Phys.Rev.D 109 (2024) 7, 074501

Step Two: Parameterizing Operators

Motivation: Three quantum numbers of SU(2) Hamiltonian can be thought of as total angular
momentum and projected angular momentums in lab frame and body frame: L2, L?, L~
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Bauer, D’Andrea, Freytsis and DMG,
Phys.Rev.D 109 (2024) 7, 074501

Step Two: Parameterizing Operators

Motivation: Three quantum numbers of SU(2) Hamiltonian can be thought of as total angular
momentum and projected angular momentums in lab frame and body frame: L2, L?, L~

Eye towards Digitization: Axis-angle coordinates are
particularly convenient parameterization of SU(2)

 Each loop variable is simply an SU(2) matrix

COS % — i sin % cos@® —isin % sin Qe =@

X =

o o Q) ° " Q) o .
—isin = sin Oe'? cos = + lSln%COSQ

“Quantum Theory of Angular Momentum”
Varshalovich, Moskalev, KhersonskKii
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Bauer, D’Andrea, Freytsis and DMG,
Phys.Rev.D 109 (2024) 7, 074501

Step Two: Parameterizing Operators

Motivation: Three quantum numbers of SU(2) Hamiltonian can be thought of as total angular
momentum and projected angular momentums in lab frame and body frame: L2, L?, L~

Eye towards Digitization: Axis-angle coordinates are
particularly convenient parameterization of SU(2)

 Each loop variable is simply an SU(2) matrix

COS % — i sin % cos@® —isin % sin Qe =@

X =

—1SIn —- SN Oe'? COS —- + 7s1n — COS %,

* Electric operators are differential operators

X FL
2

CgL/R = 2 =12ind,, + cot (%) (n X L)

“Quantum Theory of Angular Momentum”
Varshalovich, Moskalev, KhersonskKii
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Bauer, D’Andrea, Freytsis and DMG,
Phys.Rev.D 109 (2024) 7, 074501

Step Three: Digitize Operators

Motivation: As currently written, (a)K, 0. gbK) are all continuous variables and so cannot yet be
implemented onto digital quantum computers
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Bauer, D’Andrea, Freytsis and DMG,
Phys.Rev.D 109 (2024) 7, 074501

Step Three: Digitize Operators

Motivation: As currently written, (a)K, 0. ¢K) are all continuous variables and so cannot yet be
implemented onto digital quantum computers

Shift of Intuition: Axis-angle coordinates are also
hyperspherical coordinates of S3

o Angular coordinates (HK, qbk) can be recast as

spherical harmonic quantum numbers (fK, mK)

e Quantum numbers (KK, mK) are discrete, with a
natural truncation
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Bauer, D’Andrea, Freytsis and DMG,
Phys.Rev.D 109 (2024) 7, 074501

Step Three: Digitize Operators

Motivation: As currently written, (a)K, 0. ¢K) are all continuous variables and so cannot yet be
implemented onto digital quantum computers

Shift of Intuition: Axis-angle coordinates are also
hyperspherical coordinates of S3

o Angular coordinates (HK, qbk) can be recast as

spherical harmonic quantum numbers (fK, mK)

e Quantum numbers (KK, mK) are discrete, with a
natural truncation

e Variable w, is radial coordinate and can be digitized
using previously developed methods™

* Bauer. C.W. and DMG, Phys. “Mixed Basis”: w is magnetic basis variable and (z/” ; m) are electric basis
Rev.D 107 (2023) 3, L031503
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DMG, Kane and Bauer, Phys.Rev.D 111 (2025) 11, 114516

Finish Step One: Gauge Fix Fully

Observation: SU(2) Hamiltonian can be thought of as a system of rigid rods fixed together at
the origin (axis-angle are hyperspherical coordinates)

Motivation: The quantum numbers (L”K, mK) are
related to the total color charge of the system

G(ny) = Y [EZ(K) - Ef;(;c)] - - Y 1s

K

(“difference between lab and body frame’)
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DMG, Kane and Bauer, Phys.Rev.D 111 (2025) 11, 114516

Finish Step One: Gauge Fix Fully

Observation: SU(2) Hamiltonian can be thought of as a system of rigid rods fixed together at
the origin (axis-angle are hyperspherical coordinates)

Z

n(0;, ¢,)

Motivation: The quantum numbers (L”K, mK) are ’R
related to the total color charge of the system b\

O L I PR

K

(“difference between lab and body frame”)

n(93a ¢3)
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DMG, Kane and Bauer, Phys.Rev.D 111 (2025) 11, 114516

Finish Step One: Gauge Fix Fully

Observation: SU(2) Hamiltonian can be thought of as a system of rigid rods fixed together at
the origin (axis-angle are hyperspherical coordinates)

Z

nd,, ¢,

Motivation: The quantum numbers (fK, mK) are ’R
related to the total color charge of the system b\

O L I PR

K

(“difference between lab and body frame”)

Thought: |s the remaining gauge redundancy related f n(6s, ¢3)

to the rotation between the lab and body frame?
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Finish Step One: Gauge Fix Fully

Z

n(81 ’ ¢1)

<>

Lab Frame
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Finish Step One: Gauge Fix Fully

2 Z
n(d;, ;) Euler Angle Rotation
(@, 5.7)

<>

<>

Lab Frame Body Frame
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Finish Step One: Gauge Fix Fully

2 2
Euler Angle Rotation

(. B.7)

n(81 ’ ¢1)

<>

>

Lab Frame ‘ w,., 19K, §DK> — ‘ ;. O, 6’”, 6’”; a, ﬂ, }/) Body Frame
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Finish Step One: Gauge Fix Fully su(2)

2+1 and 3+1

General Idea: Appropriate basis change will lead us to a fully gauge-fixed theory for arbitrary volumes

(Magnetic) Basis Change: \ .., 19K, (pK> —> \ .., 0, 6’”, HM; a, ﬂ, }/)

(Mixed) Basis Change: ‘ ., fK, mK> — | @, Ny, f,u’ m,; A, M, N>
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Finish Step One: Gauge Fix Fully su(2)

2+1 and 3+1

General Idea: Appropriate basis change will lead us to a fully gauge-fixed theory for arbitrary volumes

(Magnetic) Basis Change: lw.,9,0) > |o,0,0 .60 ;
s © o Total Charge!

(Mixed) Basis Change: ‘ W, flc’ mK> — | Wies 1125 4 7k m,u; o AP £V _
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DMG, Kane and Bauer, Phys.Rev.D 111 (2025) 11, 114516

Finish Step One: Gauge Fix Fully su(2)

2+1 and 3+1

General Idea: Appropriate basis change will lead us to a fully gauge-fixed theory for arbitrary volumes

(Magnetic) Basis Change: o, 9., @ ) - |lw,.,0,0 ., 0 ; ‘
Kook Tk K A A Total Charge!

(Mixed) Basis Change: ‘ Wy fk’ mK‘> — ‘ Wier 1125 4 U2 m,u;_ Lo LVEs £ \

Key Points: After calculating all matrix possible matrix elements in Hamiltonian, we make

three important observations Implication: trivial to construct Hamiltonian

that spans only one total charge sector
1. No operator can change A, the total global charge
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Finish Step One: Gauge Fix Fully su(2)

2+1 and 3+1

General Idea: Appropriate basis change will lead us to a fully gauge-fixed theory for arbitrary volumes

(Magnetic) Basis Change: ©.9.0) > |w.,0,0,60 . |
S ) SR Total Charge!

(Mixed) Basis Change: ‘ Wy fk’ mK> — ‘ Wier 1125 4 U2 m,u;m s LVEs £

Key Points: After calculating all matrix possible matrix elements in Hamiltonian, we make

three important observations Implication: trivial to construct Hamiltonian

that spans only one total charge sector
1. No operator can change A, the total global charge

2. No one operator can change more than four (discrete) quantum numbers at a time

3. (Discrete) quantum numbers can only change by {—1,0, 1} Implication: Hamiltonian is sparse
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Two Plaquette System

Work in Progress

Henry Froland Zhiyao Li

[ D.M. Grabowska Explorations of Fully Gauge-Fixed SU(2)



Explicit Hamiltonian in Differential Form

General Idea: Fully gauge-fixing reduces the number of degrees of freedom

1 21 0? 0 0? 0
H (4—2cosw1 ZCOSCE) J 4( Ico’cw1 )-I—4( - C tw2 )

G 2 2 2 | \ Ow? 2 0w Ow? ”* 72 Buws
o O 0 0 1 0,
—2(:030(9 5 | sinﬁ(cotu;la | cota;a | 2001:%00’5%)%
W1 OW2 0, w1
1 1\ ]
— (20302 a;l - 2 csc? u; | 2003900’5%001:“;2 2)./\/'-
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Explicit Hamiltonian in Differential Form

General Idea: Fully gauge-fixing reduces the number of degrees of freedom

1 21 0? 0 0? 0
H=—2 (4—2(:osw1 200362) J 4( 5 Ico’cw1 )+4( 5 Icotw2 )

g 2 2 2 I 6601 2 8w1 6(4)2 2 8(4)2
0 0 . W1 0 W9 0 1 wl W9 0
— 2cos 0 -sin @ | cot - cot | —~ cot —= | —
COS o1 Do Sin (co 2 D CO 5 8(.01 5 cot cot )
1
— [ 2¢sc? Y1 L 2 csc? w2 -~ cos 6 cot w1 c ot W2 A Legendre Differential Operator
2 2 2 2 p
cot 9%

NP,(# )— (u+1)P,,(9)

[ D.M. Grabowska Fully Gauge Fixing Lattice Gauge Hamiltonians



Explicit Hamiltonian in Differential Form

General Idea: Fully gauge-fixing reduces the number of degrees of freedom

Magnetic

2 T 2 2
_ g 2 w0 6 | w0
ey e 5 (e van) (o e )

—2cos€ai1 8?02 Isinc9(cotw1 2 - co ta;ail | ; cot ﬂco Lﬁ) g

W W 1 W | egendre Differential Operator
— (20802 21 - 2 csc? 22 | 2(308900137100'6 w2 )N]t/ J P
9,

cot 6 —

o0
NP,(# )— (u+1)P,,(9)

2 80.)2
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Explicit Hamiltonian in Differential Form

General Idea: Fully gauge-fixing reduces the number of degrees of freedom

Magnetic Electric

0? 0

N: 602 COtH%

NP,(0) =v(v+1)P,(0)
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Explicit Hamiltonian in Differential Form

General Idea: Fully gauge-fixing reduces the number of degrees of freedom

Magnetic Electric

0? 0

N: 802 COte%

Two Important Questions: NP,(0)=v(v+1)P,(0)

* Are there efficient ways to implement this on digital guantum devices?

« (Can these methods easily generalize to larger number of plaquettes?
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Different Discrete Bases for Two Plaquette System

General Idea: Different bases work well for different values of the gauge coupling

Gauge Coupling
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Different Discrete Bases for Two Plaquette System

General Idea: Different bases work well for different values of the gauge coupling

Gauge Coupling
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Different Discrete Bases for Two Plaquette System

General Idea: Different bases work well for different values of the gauge coupling

Gauge Coupling
Weak Strong

— Mixed Basis —

Continuous
Variables

M\

‘a)laa)za I/>

Legendre
Polynomial Index
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Different Discrete Bases for Two Plaquette System

General Idea: Different bases work well for different values of the gauge coupling

Gauge Coupling
Weak Strong

— Mixed Basis —

Continuous

« Character Irrep Basis *
Variables

Y \ <601,6()2,9‘j1,].2, U) —

‘ 6019 a)za I/>
= )(;;(601))(];/(&)2)}) 1/(9)

Legendre
Polynomial Index
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Different Discrete Bases for Two Plaquette System

General Idea: Different bases work well for different values of the gauge coupling

Gauge Coupling
Weak Strong

— Mixed Basis —

« Laguerre Basis * « Character Irrep Basis *

Continuous
Variables
<a)1,602,9‘n1,n2, I/> — Y \ <601,6()2,9‘j1,].2, I/> —
2312 ‘ 6019 a)za I/>
N fat: (4\[ ) P (0) / = x; (@01)y; (@,)P,(0)
& Legendre

Polynomial Index
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Example: Two Plaquette Universe

General Idea: Full gauge-fixing can result in resource savings

=6 £ =7

Kogut - Susskind

Irrep Basis

| o> My s Mg )
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Most naive implementation!

Example: Two Plaquette Universe

General Idea: Full gauge-fixing can result in resource savings

=6 £ =7

Kogut - Susskind

Irrep Basis £ =5
[Jg» My g Migy)
£ =1 £ =2
: : 1 / 3 i) : 7 : : ]
Dim(#(j, ) - (3) (873 1+ 1812, + 13], +3) Dim(F(j. = 1)) ~ 10
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Most naive implementation!

Example: Two Plaquette Universe

General Idea: Full gauge-fixing can result in resource savings

=6 £ =7

Kogut - Susskind

Irrep Basis £ =5
[Jg» My g Migy)
£ =1 £ =2
: : 1 / 3 i) : 7 : : ]
Dim(#(j, ) - (3) (873 1+ 1812, + 13], +3) Dim(F(j. = 1)) ~ 10

Additional concerns: state prep and gauge violation due to truncation/Trotter
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Example: Two Plaquette Universe

General Idea: Full gauge-fixing can result in resource savings

Fully-Gauge Fixed

Irrep Basis

| J15J05 V)

Zero Charge Sector

(Y@ D.M. Grabowska Fully Gauge Fixing Lattice Gauge Hamiltonians



Example: Two Plaquette Universe

General Idea: Full gauge-fixing can result in resource savings

S Fully-Gauge Fixed | : :
ks : : :
® Irrep Basis : r=1 : X =72 :
9 [1 [1 [1
) . . i 0 [
L ‘] 9.] p I/) rn - "—-—-_- . | i
O J2 N —_— . I
O ®

O

N

Dim(#(, v, ):Q2j +1¥w, +1) Dim(#(j, =2, v, =2)=75
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Example: Two Plaquette Universe

General Idea: Full gauge-fixing can result in resource savings

S Fully-Gauge Fixed | : :
ks : : :
® Irrep Basis : r=1 : X =72 :
9 [1 [1 [1
) . . i 0 [
L ‘] 9.] p I/) rn - "—-—-_- . | i
O J2 N —_— . I
O ®

O

N

Dim(#(, v, ):Q2j +1¥w, +1) Dim(#(j, =2, v, =2)=75

Additional concerns: effects of non-locality as lattice volume grows
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Mixed Basis Circuit Construction

General Idea: Construct circuit for each type of term independently and stitch them together

Seven types of terms

0, folwy) h(@)d,,  filwy,v)d,, falw,,v)
()00, fs(wy, @y, 1)
0, folw,) h(@)d,,  fiw,v)0,, filwy, v)
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Mixed Basis Circuit Construction

General Idea: Construct circuit for each type of term independently and stitch them together

Seven types of terms

0, folwy) h(@)d,,  filwy,v)d,, falw,,v)
()00, fs(wy, @y, 1)
0, folw,) h(@)d,,  fiw,v)0,, filwy, v)

Two Possible Approaches: Implementing these terms can be done in two (related) ways
* (Asymptotic Approach): Determine circuits for each term individually

* NISQ Approach: Decompose terms into Pauli strings and use truncation and clever
orderings to cancel as many CNOTs as possible
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Mixed Basis Circuit Construction, Asymptotic Approach
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Mixed Basis Circuit Construction, Asymptotic Approach

N qubits
2 | ~
ancilla
" —
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*N. Klco and M.J. Savage, Phys. Rev. A 99, 062335

Mixed Basis Circuit Construction, Asymptotic Approach

N qubits
Standard way of implementing
02 w; ) 2 second deriv?tives with exponential
w; convergence
ancilla,
2
O(N7)
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*N. Klco and M.J. Savage, Phys. Rev. A 99, 062335

Mixed Basis Circuit Construction, Asymptotic Approach

N qubits
Standard way of implementing
02 w; ) 2 second derivatives with exponential
W; convergence”
ancilla
O(N?)
f(@)d,
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*N. Klco and M.J. Savage, Phys. Rev. A 99, 062335

Mixed Basis Circuit Construction, Asymptotic Approach

N qubits

Standard way of implementing
second derivatives with exponential
convergence”

wi)

ancilla
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*N. Klco and M.J. Savage, Phys. Rev. A 99, 062335

Mixed Basis Circuit Construction, Asymptotic Approach

N qubits
Standard way of implementing
02 w; ) .2 second derivatives with exponential
); - convergence*
ancilla
O(N?)
~ O(N?)
wi) N; qubits :
f(@)d,,
20N,
N, qubits ~ O(N;27)
w; g

Exponential CNOT gate is fl(a)j) IS due to this being a trigonometric function - approximation dramatically reduces overhead cost
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Mixed Basis Circuit Construction, NISQ Approach

General Idea: Decompose each term in Hamiltonian into Pauli strings and optimize

H = Zﬂka— Z Z c; P @i = ® /c; o' %it

k 1€5(P) 2

S.= support of H, and P, is power set
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Mixed Basis Circuit Construction, NISQ Approach

General Idea: Decompose each term in Hamiltonian into Pauli strings and optimize

H = Zﬁka— Z Z c; P g)i = ® /c; o' %it

k 1€5(P) 2

S.= support of H, and P, is power set

General Comments:

e Generically there are 47 terms

e Choose some truncation scale € and ignore all smaller rotations

e Hardest terms to implement (most non-local, highest weight) have smaller coefficients - even
mild truncations gives biggest savings

e Usefulness depends on truncation
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Energy Spectrum Results

Energy Spectrum for Two Plaquette System
using mixed basis formulation

* Three qubits per @w and one for v

» Strong coupling limit is result for character irrep
formulation

* Best ground state bound is PDE (FEM) solver
result

 Laguerre results will be added

D.M. Grabowska

[
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state 0

state 1

state 2

state 3

state 4

state o

state 0

state 7

strong coupling limit
best gs bound

Preliminary
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Conclusions

Simulating non-Abelian gauge theories on digital quantum devices necessitates
balancing the requirements of gauge invariance, efficiency for fine lattices and

systematic improvability

Main Take-Away Point 1: Gauge fixing allows for constructing Hamiltonians in the group
element basis, allowing for efficient simulations at weak coupling®
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Conclusions

Simulating non-Abelian gauge theories on digital quantum devices necessitates
balancing the requirements of gauge invariance, efficiency for fine lattices and

systematic improvability

Main Take-Away Point 1: Gauge fixing allows for constructing Hamiltonians in the group
element basis, allowing for efficient simulations at weak coupling®

* Do not worry: we are thinking about how to extend this to go to SU(3) and include fermions
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Conclusions

Simulating non-Abelian gauge theories on digital quantum devices necessitates
balancing the requirements of gauge invariance, efficiency for fine lattices and

systematic improvability

Main Take-Away Point 1: Gauge fixing allows for constructing Hamiltonians in the group
element basis, allowing for efficient simulations at weak coupling®

Main Take-Away Point 2: Non-local interactions do not always result in highly connected
systems and exponential resource scaling

* Do not worry: we are thinking about how to extend this to go to SU(3) and include fermions
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