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Munzinger, Dönigus, 1809.04681 (2018)
Gardim, Giacalone et. al., 1908.09728 (2020)
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Andronic et al., 1611.01347 (2016)

• Thermal model:
Hadron resonance gas with temperature T, 
baryochemical potential µB and volume V

• HIC is nearly pure, isolated and highly 
entangled quantum state that evolves unitarily
→ no entropy production

• How does apparent thermalization emerge in a 
closed quantum system, when energy is 
conserved?
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Quantum entanglement is key to understanding apparent thermalization
→ Thermalization dynamics of nonabelian gauge theory

Müller, Schäfer, 2211.16265 (2022)
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• AF barrier before 
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• Electric basis on links:
𝐸2 𝑗𝑚𝐿𝑚𝑅 = 𝑗 𝑗 + 1 𝑗𝑚𝐿𝑚𝑅

• Gauss law: each vertex transforms as singlet
𝐷𝑖𝐸𝑖

𝑎 𝜓 = 0

Byrnes, Yamamoto, quant-ph/0510027 (2005)
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• Only three links per vertex
→ singlet uniquely determined by j values

• Matrix elements of plaquette operator between 
physical states (j: initial, J: final):

Klco, Stryker, Savage, 1908.06935 (2019)
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• SU(2) KS with 𝑗max = 1/2 can be mapped 
onto spin model

• project onto momentum eigenstates and 
symmetry sector Yao, 2303.14264 (2023)

Müller, Yao, 2307.00045 (2023)
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• How does apparent thermalization emerge in a closed quantum system, when energy is conserved?

• Time evolution of local operator expectation value
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Deutsch, PRA 43, 2046 (1991)
Srednicki, PRE 50, 888 (1994)
Rigol, Dunjko, Olshanii, Nature 452, 854 (2008)
D’Alessio, Kafri, Polkovnikov, Rigol, Adv. Phys. 65 (2016) 239
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For large system and initial state with small energy fluctuation, ETH leads to:

• Long time average ത𝑂 ≈ thermal expectation value 𝑂 𝑇→ Ergodicity

• Fluctuations of 𝑂 𝑡 around ത𝑂 decrease exponentially in system size

• Quantum fluctuations ≈ thermal fluctuations

The system, observed via 𝑂, is indistinguishable from a system in thermal equilibrium
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To show:

1. Diagonal matrix elements are exponentially close to microcanonical ensemble

2. Off-diagonal matrix elements correspond to Gaussian random matrix

3. Identify smooth spectral function and show decay for large 𝜔

4. Quantum chaos indicators: RMT properties (BGS conjecture → GOE)
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• Mean restricted gap ratio shows:
• GOE for weak coupling

• Poisson for strong coupling

• Smooth interpolation between non-ergodic and 
RMT behavior

• Only consider converged part of physical 
spectrum (upper bound)

• Truncate from below to account for finite size 
effects



Evidence for ETH

1. Diagonal matrix elements

• Consider 1-plaquette and 2-plaquette operators 
with ergodic coupling

• Proxy for MC ensemble:

• Matrix elements are exponentially close to 
ensemble average value

→ 𝑒−𝑆/2 scaling of fluctuations
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Evidence for ETH

2. Off-diagonal matrix elements

• Characteristic 𝜔-regions:

• Exponential decay at large 𝜔

• Bumpy intermediate region (quasiparticle 
contributions)

• Diffusive plateau

• Transport peak

• Off-diagonal matrix elements of 𝐻el follow 
Gaussian distribution
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Evidence for ETH

3. Smooth spectral function

• For small 𝜔: diffusive transport peak with plateau

• Plateau disappears when system non-chaotic

10/1/25 Clemens Seidl, University of Regensburg 17

SU(2)

ETH

EE

AF



Evidence for ETH

4. RMT properties

• Restricted gap ratio:

• GOE measure:

• GOE prediction: Λ𝑇 →
1

2
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Wang, PRL 128, 180601 (2022)
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• Von Neumann entropy:

• EE measures degree of entanglement between a 
subsystem and its complement

• Ground state: 𝑆𝐴~Area 𝜕𝐴

• Highly excited states: 𝑆𝐴~Vol 𝐴

• Crossover: sub-volume growth

• Thermal entropy:
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• Scaling functions:

• Crossover function from 2D CFT (Miao, Barthel, 
10.1103/PRL.127.040603 (2021))

• Crossover function can also be derived 
holographically in AdS3/CFT2
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• Early time: system appears thermal

• After evaporation: full contained quantum 
information visible to observer

• Small subsystem: system appears thermal

• Large subsystem (more than half): quantum 
correlations become visible

Measurement of highly entangled state (like HIC) indistinguishable from thermal state



Quantum many-body scars
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Banerjee, Sen, 2012.08540 (2020)
Aramthottil et al., 2201.10260 (2022)



Quantum many-body scars: 𝑗max = 1/2
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• Continuum property: magnetic energy = electric energy

• Many outliers in entanglement spectrum



Quantum many-body scars: 𝑗max > 1/2
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• No QMBS for sufficiently high 𝑗max

• No ETH-violating states in pure 2+1D SU(2) LGT

N = 9, 𝑁𝐴 = 4 , 𝑔2𝑎 = 1.2, 𝑗max = 1
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• Real-time evolution of non-eigenstates: 
electric/momentum basis states

• After thermalization: EE ≈ thermal entropy

• Two parameter fit:

• 𝑡0 controls thermalization time, 𝜅 controls 
entanglement growth rate

N = 9, 𝑁𝐴 = 3 , 𝑔2𝑎 = 1.2, 𝑗max = 1

→ Universal form of EE growth for highly excited states
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Quantum Complexity

• So far FIRST LAYER OF QUANTUMNESS: ENTANGLEMENT

• State can be quantum in the sense of entanglement, but classical in the sense 
of computation

• Need SECOND LAYER OF QUANTUMNESS: MAGIC

• Magic refers to the amount by which a quantum state departs from being a 
stabilizer (Clifford) one, quantified by Stabilizer Renyi Entropy

• PROBLEM: qudits instead of qubits for higher 𝑗 representations
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Gottesman-Knill theorem 
→ States produced by Clifford gates may be very entangled but can be simulated 

efficiently with classical resources



Anti-flatness

• Instead, look at anti-flatness (AF) of entanglement 
spectrum:

• Average over Clifford orbits is equal to magic:

• ℱA 𝜓 ≠ 0 ⇒ state contains magic

• ℱA 𝜓 is lower bound for non-local magic
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Cao et al., 2403.07056 Tirrito et al., PRA 109, L040401 (2024)

Tirrito et al., PRA 109, L040401 (2024)

Odavic et al., PRB 112, 104301 (2025)
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• Investigate ensemble of computational basis states in energy window

• Synchronize thermalization process using universal EE growth function



Anti-flatness barrier before thermalization
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• Investigate ensemble of computational basis states in energy window

• Synchronize thermalization process using universal EE growth function



Anti-flatness barrier before thermalization
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• Prepare highly excited low-AF state

• Entanglement spectrum flat for 𝑡 = 0 and 𝑡 ≫ 1

• Peak correlated to time of maximum EE growth

Magic barrier during thermalization process



Anti-flatness barrier before thermalization
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• Magic barrier before hydro reached

• Need QC for time evolution until 
hydro models applicable

Highly excited, 
low-entangled 
initial product 
state

Highly quantum regime during EE growth
→ Demands full quantum computing

Equilibrium 
properties can be 
studied with 
thermal statistical 
models

Onset of Hydro



Key Takeaways
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SU(2) LGT compatible with ETH

Absence of QMBSs in pure SU(2) LGT

AF/Magic barrier



Next Steps

• Interpretation of different 
thermalization time scales

• Transport coefficients / diffusion 
constant

• Early-time evolution of EE on quantum 
device

• Physical limit and SU(3)
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Thanks!



Backup

10/1/25 Clemens Seidl, University of Regensburg 36



Backup

10/1/25 Clemens Seidl, University of Regensburg 37



Backup

10/1/25 Clemens Seidl, University of Regensburg 38

Ball et al., 1706.00428 (2017)
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Compare to RDM of ground state
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