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“Nature isn’t classical, dammit, and if you want to make a simulation 
of nature, you’d better make it quantum mechanical.” 

                                                                                         - Richard Feynman

The degrees of freedom of a quantum field theory can be efficiently 
encoded into quantum simulator degrees of freedoms.



|ψ⟩in → e−iĤt → ⟨𝒪̂(t)⟩
Phenomenon of interest Quantum simulation

“Nature isn’t classical, dammit, and if you want to make a simulation 
of nature, you’d better make it quantum mechanical.” 

                                                                                         - Richard Feynman



|ψ⟩in → e−iĤt → ⟨𝒪̂(t)⟩

The first step in a quantum simulation is 
the preparation of an initial state.  

This routine typically involves the 
preparation of an interacting ground state.

“Nature isn’t classical, dammit, and if you want to make a simulation 
of nature, you’d better make it quantum mechanical.” 

                                                                                         - Richard Feynman
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Direct methods

|Ω⟩

Known ground-state 
(of free/ analytically solvable theory, or 
obtained from exact diagonalization )

Translation to quantum circuit 
(map wavefunction to quantum-
circuit using classical algorithm)

Ground-state quantum circuit 
(implement classically-compiled 
quantum circuit on hardware) 



Exact quantum methods

|ψ0⟩
Trial state 

(Easily prepared, 
typically has non-trivial 

overlap with ground 
state of interest)

Quantum routine 
(real/ imaginary time evolution, 

iterative filtering, projective 
measurements etc., may also 
involve classical mid- or post- 

circuit processing )

Ground-state quantum circuit 

• While these algorithms come with provable guarantees for accuracy and optimality, they require deep coherent quantum circuits. 

• Hence, they are more suitable for the far-term fault-tolerant era.



Heuristic hybrid methods

Variational quantum 
circuit 

Measurements Optimization feedback loop 

Λ1

Λ2

Λ3

Λ4

Λ5

Λ6

Λ7

• Some quantum computing cost is traded off by the classical computing cost of optimization, resulting in shallower circuits. 

• This makes this method more appropriate for the near-term era. 

• However, there are typically no guarantees  for the accuracy and efficiency of this procedure and its success critically depends 
upon an appropriate choice of circuit ansatz.  

• Furthermore, statistical noise from quantum measurements aggravates barren plateaus.



An opportunity
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Hadron 
Spectrum

Structure

(Quark density for an unpolarized proton moving towards the viewer for the up 
quark on the left and down quark on the right)

(Summary of lattice calculations of isovector unpolarized quark PDFs 
from various collaborations)

Path Integral Monte Carlo (PIMC) 
methods like lattice QCD are a rich 
source of ground-state data. 



From lattice QCD to ground states for simulation?

Non-trivial to make a 
connection between

and

in general, and for QCD in 
particular.

Euclidean Monte 
Carlo data

Minkowski wavefunctions



Classically determined quantum circuits
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manifold
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Target state 

|Ω⟩
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optimization

|ψ( ⃗Λ0 )⟩
Translation to 
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Trapped ion quantum computer from 
Monroe Lab (UMD, 2016)
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Ground state of  theory(1 + 1)D ϕ4

m2

λ
( )N → ∞

Phase transition
⟨ ̂ϕn⟩ = 0

⟨ ̂ϕn⟩ ≠ 0

Continuum limit: 

 along some 
line of constant physics.
m2, λ → 0,0

Parity, time-reversal, cyclic translation, and inversion symmetric.



m2

λ
( )N → ∞

⟨ ̂ϕn⟩ = 0

⟨ ̂ϕn⟩ ≠ 0

Correlations Non-Gaussianity

Ground state of  theory(1 + 1)D ϕ4

R2n =
⟨ ̂ϕ2n⟩

(2n − 1)!!⟨ ̂ϕ2⟩n
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Finite-stellar rank states

Most pure states of  bosonic modes have the decompositionN

|C⟩R = ∑
⃗n = n0, …, nN−1

sum( ⃗n) ≤ R

c ⃗n | ⃗n⟩

 is the stellar 
rank of this state.

R ∈ ℕ ∪ {0}

States which do not admit the above decomposition are said to have an infinite rank.

Chabaud, U., Markham, D., & Grosshans, F. (2020). Stellar representation 
of non-Gaussian quantum states. Physical Review Letters, 124(6), 063605.

|ψ⟩R = ÛG |C⟩R
Gaussian unitary 
transformation

Core state



R = 0
(Gaussian)

R = 2 … Rank ∞

Ground state of  
 theory(1 + 1)D ϕ4

Chabaud, U., Markham, D., & Grosshans, F. (2020). Stellar representation 
of non-Gaussian quantum states. Physical Review Letters, 124(6), 063605.

Finite rank states can get arbitrarily close to infinite-rank states (in trace distance). 
Thus, we will use finite rank states to approximate the infinite rank ground state.

R = 1



The  ansatz(R, Q)

|ψ⟩R = ÛG |C⟩R → |ψ⟩R,Q = ⊗N−1
j=0 ÛG,j |C⟩R,Q

UG,j = ̂Sj(r)

|C⟩R,Q = ∑
⃗n = n0, …, nN−1

sum( ⃗n) ≤ R
span( ⃗n) ≤ Q ≤ N/2

c ⃗n | ⃗n⟩

Squeezing 
ϕ

π

̂S(r) = e
r
2 [( ̂a†)2 − ̂a2]

span( ⃗n) = 3
(All non-zero excitations 
reside between sites  
and )

j
j + 3

⃗n = (0,1,2,0,1,0,0,0,0,0,0,0)0
1

2
3

4
567

8

9

10

11

• The variational parameters are  and . 

• The above simplifications result in an  complexity for the classical computation of low-order 
expectation values.  is the number of terms in the superposition .

r c ⃗n

O(Q2 |cR,Q |2 )
N |cR,Q | |C⟩R,Q



The Gaussian Effective Potential (GEP) ansatz

|ψ⟩R = ÛG |C⟩R → |ψ⟩GEP = ÛGEP | 0⃗⟩

•  is the ground-state of a free scalar field theory with bare mass , which is the variational parameter. 

• The ground state of a  theory with bare mass  can be approximated by that of a free scalar field theory 
with a different mass .

ÛGEP μ

λϕ4 m
μ
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Energy minimization

m2

λ
(N → ∞

⟨ ̂ϕn⟩ = 0

⟨ ̂ϕn⟩ ≠ 0



Energy minimization: Two-point functions

m2

λ
(N → ∞

⟨ ̂ϕn⟩ = 0

⟨ ̂ϕn⟩ ≠ 0



Energy minimization: Moment ratios

m2

λ
(N → ∞

⟨ ̂ϕn⟩ = 0

⟨ ̂ϕn⟩ ≠ 0

R2n =
⟨ ̂ϕ2n⟩

(2n − 1)!!⟨ ̂ϕ2⟩n



Moment optimization

⃗Λ

Energy

E0

E1

⃗Λ0 = argmin ⃗Λ [⟨ψ( ⃗Λ) | Ĥ |ψ( ⃗Λ)⟩]



Moment optimization

⃗Λ

Energy

E0

E1

⃗Λ0 = argmin ⃗Λ [⟨ψ( ⃗Λ) | Ĥ |ψ( ⃗Λ)⟩]

Acceptable energy tolerance



Moment optimization

⃗Λ

Energy

E0

E1

Acceptable energy tolerance

⃗Λ0 = argmin ⃗Λ ⟨ψ( ⃗Λ) | Ĥ |ψ( ⃗Λ)⟩+ ∑̂
O∈𝒯

wÔ (⟨ψ( ⃗Λ) | Ô |ψ( ⃗Λ)⟩ − ⟨Ω | Ô |Ω⟩)
2

Varying the set of “target moments”  and weights  
enables exploration of acceptable regions in parameter space.

𝒯 wÔ



Euclidean-Monte-Carlo-informed Moment optimization

⃗Λ

Energy

E0

E1

Acceptable energy tolerance

⃗Λ0 = argmin ⃗Λ ⟨ψ( ⃗Λ) | Ĥ |ψ( ⃗Λ)⟩+ ∑̂
O∈𝒯

wÔ (⟨ψ( ⃗Λ) | Ô |ψ( ⃗Λ)⟩ − ⟨Ω | Ô |Ω⟩)
2

Ground-state moments  can be sourced from 
Euclidean Monte Carlo methods.

⟨Ω | Ô |Ω⟩



⃗Λ0 = argmin ⃗Λ ⟨ψ( ⃗Λ) | Ĥ |ψ( ⃗Λ)⟩+w ∑̂
O∈𝒯

(⟨ψ( ⃗Λ) | Ô |ψ( ⃗Λ)⟩ − ⟨Ω | Ô |Ω⟩)
2

Optimization of two-point functions

⃗Λ

Energy

Choose  and the  ansatz.𝒯 = { ̂ϕ0
̂ϕ4} (R, Q) = (2,2)



⃗Λ0 = argmin ⃗Λ ⟨ψ( ⃗Λ) | Ĥ |ψ( ⃗Λ)⟩+w ∑̂
O∈𝒯

(⟨ψ( ⃗Λ) | Ô |ψ( ⃗Λ)⟩ − ⟨Ω | Ô |Ω⟩)
2

Choose  and the  ansatz.𝒯 = { ̂ϕ0
̂ϕ4} (R, Q) = (2,2)

Optimization of two-point functions

⃗Λ

Energy

- Varying  leads to excursions in the parameter space. w

Coefficients of the core-
state polynomialSqueezing parameter



⃗Λ0 = argmin ⃗Λ ⟨ψ( ⃗Λ) | Ĥ |ψ( ⃗Λ)⟩+w ∑̂
O∈𝒯

(⟨ψ( ⃗Λ) | Ô |ψ( ⃗Λ)⟩ − ⟨Ω | Ô |Ω⟩)
2

Optimization of two-point functions

⃗Λ

Energy

- Varying  leads to excursions in the parameter space. 

- Target-moment discrepancies go down with  

w

w

Choose  and the  ansatz.𝒯 = { ̂ϕ0
̂ϕ4} (R, Q) = (2,2)



⃗Λ0 = argmin ⃗Λ ⟨ψ( ⃗Λ) | Ĥ |ψ( ⃗Λ)⟩+w ∑̂
O∈𝒯

(⟨ψ( ⃗Λ) | Ô |ψ( ⃗Λ)⟩ − ⟨Ω | Ô |Ω⟩)
2

Optimization of two-point functions

⃗Λ

Energy

- Varying  leads to excursions in the parameter space. 

- Target-moment discrepancies go down with  at a negligible cost in energy for larger  values. 

w

w (m2, λ)

Choose  and the  ansatz.𝒯 = { ̂ϕ0
̂ϕ4} (R, Q) = (2,2)



⃗Λ0 = argmin ⃗Λ ⟨ψ( ⃗Λ) | Ĥ |ψ( ⃗Λ)⟩+w ∑̂
O∈𝒯

(⟨ψ( ⃗Λ) | Ô |ψ( ⃗Λ)⟩ − ⟨Ω | Ô |Ω⟩)
2

Optimization of two-point functions

⃗Λ

Energy

- Varying  leads to excursions in the parameter space. 

- Target-moment discrepancies go down with  at a negligible cost in energy for larger  values. 

- Crucially, there is a systematic improvement in the behavior of the two-point functions. 

w

w (m2, λ)

Choose  and the  ansatz.𝒯 = { ̂ϕ0
̂ϕ4} (R, Q) = (2,2)



⃗Λ0 = argmin ⃗Λ ⟨ψ( ⃗Λ) | Ĥ |ψ( ⃗Λ)⟩+w ∑̂
O∈𝒯

(⟨ψ( ⃗Λ) | Ô |ψ( ⃗Λ)⟩ − ⟨Ω | Ô |Ω⟩)
2

Optimization of two-point functions

⃗Λ

Energy

- Varying  leads to excursions in the parameter space. 

- Target-moment discrepancies go down with  at a negligible cost in energy for larger  values. 

- Crucially, there is a systematic improvement in the behavior of the two-point functions. 

- However, the ansatz moment ratios do not capture the non-Gaussianity of the theory. 

w

w (m2, λ)

R2n =
⟨ ̂ϕ2n⟩

(2n − 1)!!⟨ ̂ϕ2⟩n

Choose  and the  ansatz.𝒯 = { ̂ϕ0
̂ϕ4} (R, Q) = (2,2)



Optimization of two-point functions

𝒯 = { ̂ϕ0
̂ϕ4}

R2n =
⟨ ̂ϕ2n⟩

(2n − 1)!!⟨ ̂ϕ2⟩n

Ground-state non-
Gaussianity is 
captured no better 
than the minimum 
energy ansatz.

Ground-state two-
point functions are 
captured more 
accurately.



Optimization of moment ratios

𝒯 = { ̂ϕ6
0, ̂ϕ8

0, ̂ϕ10
0 }

R2n =
⟨ ̂ϕ2n⟩

(2n − 1)!!⟨ ̂ϕ2⟩n

Ground-state non-
Gaussianity is 
captured more 
accurately. 

Ground-state two-
point functions are 
captured slightly less 
accurately.
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Circuit encoding: Discrete variable

…

Mode  0 |00, …,0n0−1,1n0
,0n0+1, …,0Λ⟩|n0⟩, n0 ≤ Λ ↦ }

0
1

Λ

…

Mode  1 |00, …,0n1−1,1n1
,0n1+1, …,0Λ⟩|n1⟩, n1 ≤ Λ ↦ }

0
1

Λ…

…Mode N − 1 |00, …,0n1−1,1n1
,0n1+1, …,0Λ⟩|n1⟩, n1 ≤ Λ ↦ }

0
1

Λ

…

|n0⟩q ≡

|n1⟩q ≡

|nN−1⟩q ≡

↦| ⃗n⟩ = |n0, n1, …, nN−1⟩ | ⃗n⟩q ≡ |n0⟩q ⊗ |n1⟩q ⊗ … ⊗ |nN−1⟩q



|ψ⟩R,Q = ÛG |C⟩

= ÛG
¯

∑ ⃗n c ⃗n | ⃗n⟩
↦ |ψ⟩R,Q,q ≡ [ÛG]q

¯
∑ ⃗n c ⃗n | ⃗n⟩q

Circuit encoding: Discrete variable



|ψ⟩R,Q = ÛG |C⟩

= ÛG
¯

∑ ⃗n c ⃗n | ⃗n⟩
↦ |ψ⟩R,Q,q ≡ [ÛG]q

¯
∑ ⃗n c ⃗n | ⃗n⟩q

Circuit encoding: Discrete variable

• The core state has a bounded support over Fock space. 

• Thus, it can be represented exactly using  qubits per mode. 

• Using the sparse state preparation algorithm proposed by Gleinig et al., this state can be prepared using 
  gates and  single qubit gates using an  complexity.

R + 1

O(N2) CNOT O(N logN) O(N3logN)



|ψ⟩R,Q = ÛG |C⟩

= ÛG
¯

∑ ⃗n c ⃗n | ⃗n⟩
↦ |ψ⟩R,Q,q ≡ [ÛG]q

¯
∑ ⃗n c ⃗n | ⃗n⟩q

Circuit encoding: Discrete variable

• The Gaussian unitary operation is , where . 

• This operator extends the support of the core state to the entire bosonic Hilbert space. 

• Thus, it can only be represented approximately on a discrete-variable platform.

ÛG = ⊗N−1
j=0

̂Sj(r) ̂S(r) = e
r
2 [( ̂a†)2− ̂a2]



Circuit encoding: Discrete variable

̂S(r) = e
r
2 [( ̂a†)2− ̂a2]

= e
r
2 ∑∞

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

̂SΛ(r) = e
r
2 ∑Λ

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

Truncation

Trotterization

̂SΛ,K(r) = (e−i r
K sΛ

0 e−i r
K sΛ

2 )
K

(e−i r
K sΛ

1 e−i r
K sΛ

3 )
K

• Once a choice for the “circuit 
regulators”, namely the cutoff  
and number of Trotter layers  is 
picked, the squeezing operator 
can be implemented using 

 CNOT gates. 

• We now describe the errors 
associated with both 
regularizations.

Λ
K

O(ΛK)



Circuit encoding: Discrete variable

̂S(r) = e
r
2 ([ ̂a†)2− ̂a2]

= e
r
2 ∑∞

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

̂SΛ(r) = e
r
2 ∑Λ

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

Truncation

Trotterization

̂SΛ,K(r) = (e−i r
K sΛ

0 e−i r
K sΛ

2 )
K

(e−i r
K sΛ

1 e−i r
K sΛ

3 )
K

• Truncation results in two sources 
of error. 



Circuit encoding: Discrete variable

= e
r
2 ∑∞

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

̂SΛ(r) = e
r
2 ∑Λ

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

Truncation

Trotterization

̂SΛ,K(r) = (e−i r
K sΛ

0 e−i r
K sΛ

2 )
K

(e−i r
K sΛ

1 e−i r
K sΛ

3 )
K

• Truncation results in two sources 
of error. 

• The first source of error is the 
leakage of Fock space amplitude 
to outside of the truncated 
Hilbert space.

̂S(r) = e
r
2 ([ ̂a†)2− ̂a2]



Circuit encoding: Discrete variable

= e
r
2 ∑∞

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

̂SΛ(r) = e
r
2 ∑Λ

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

Truncation

Trotterization

̂SΛ,K(r) = (e−i r
K sΛ

0 e−i r
K sΛ

2 )
K

(e−i r
K sΛ

1 e−i r
K sΛ

3 )
K

• Truncation results in two sources 
of error. 

• The first source of error is the 
leakage of Fock space amplitude 
to outside of the truncated 
Hilbert space. 

• The second source of error is 
related to the difference between 
relevant matrix elements of the 
operators  and .̂S(r) ̂SΛ(r)

̂S(r) = e
r
2 ([ ̂a†)2− ̂a2]



Circuit encoding: Discrete variable

⟨n2 | ̂S(r) |n1⟩ = e
r
2 ∑∞

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

n1 ≤ R

Fock 
occupation

n2

Path length p0 =
n2 − n1

2
p0 + 2 p0 + 4



Circuit encoding: Discrete variable

⟨n2 | ̂S(r) |n1⟩ = e
r
2 ∑∞

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

n1 ≤ R

Fock 
occupation

n2 ≤ Λ

Λ

Path length p0 =
n2 − n1

2
p0 + 2 p0 + 4 p0 + (Λ + 1 − n2)



Circuit encoding: Discrete variable

= e
r
2 ∑∞

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

n1 ≤ R

Fock 
occupation

n2 ≤ Λ

Λ

Path length p0 =
n2 − n1

2
p0 + 2 p0 + 4 p0 + (Λ + 1 − n2)

Λ − 2
′￼⟨n2 | ̂SΛ(r) |n1⟩

Paths at this 
order and 
beyond are 
discarded  to 
compute matrix 
elements of the 
truncated 
squeezing 
operator!



Circuit encoding: Discrete variable

̂S(r) = e
r
2 (( ̂a†)2− ̂a2)

= e
r
2 ∑∞

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

̂SΛ(r) = e
r
2 ∑Λ

n=0 ℓn( |n + 2⟩⟨n | − |n⟩⟨n + 2 |)

Truncation

Trotterization

̂SΛ,K(r) = (e−i r
K sΛ

0 e−i r
K sΛ

2 )
K

(e−i r
K sΛ

1 e−i r
K sΛ

3 )
K

• The first-order product formula 

results in an  value 

for the spectral norm of 
. 

• This bound, however, is quite 
loose because it is state-
independent.

O ( Nr2Λ3

K )
̂SΛ(r) − ̂SΛ,K(r)



Circuit encoding: Discrete variable

Optimized squeezing parameter  from energy minimizationr Minimum values of  and  that  guarantee fidelity  for 
the  ansatz

Λ K F0
(R, Q) = (4,2)

We now look at the values of circuit regulators  and  that guarantee a minimum fidelity between  and .Λ K |ψ⟩R,Q |ψΛ,K⟩R,Q



Ansatz 
manifold

|ψ( ⃗Λ)⟩

Target state 

|Ω⟩
Path Integral Monte Carlo 
(PIMC) informed moment 

optimization

|ψ( ⃗Λ0 )⟩

Trapped ion quantum computer from 
Monroe Lab (UMD, 2016)

Ground state
 

theory
(1 + 1)D ϕ4

Bosonic states 
with finite 

stellar rank

Translation to 
quantum circuit

Classically determined quantum circuits



Summary

|ψ( ⃗Λ)⟩

 |Ω⟩

|ψ( ⃗Λ0 )⟩

• The  ansatz is a classically tractable, circuit-translatable, and circuit-efficient ansatz for multimode bosonic systems. 

• The ansatz is optimized classically using Euclidean-Monte-Carlo-informed moment optimization. This procedure augments 
the familiar variational minimization of energy by penalizing deviations in selected sets of target moments. 

• The optimized ansatz can thereafter be translated into a quantum circuit with polynomial complexity in system size.

(R, Q)



Outlook

|ψ( ⃗Λ)⟩

 |Ω⟩

|ψ( ⃗Λ0 )⟩

• A detailed study of the thermodynamic and continuum limits. 

• Translation to bosonic quantum circuits. 

• Variational quantum algorithms based on the   ansatz. 

• Study of dynamics with moment-optimized initial states. 

• Extension to theories with fermions and gauge bosons. 

• Implications of PIMC-induced statistical uncertainty. 

(R, Q)


