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Cost of a quantum simulation

Calculating physical observables requires taking the continuum limit a → 0

Fair comparisons between methods must include this cost

Error from approximate time evolution can spoil continuum limit

Procedure to remove time evolution errors when using Trotter methods developed
[Marcela Carena, Henry Lamm, Ying-Ying Li, Wanqiang Liu, PRD, arXiv:2107.01166]

→ not applicable to other algorithms

Our Goal: Develop a general framework for controlling impact of time evolution errors on
continuum limit applicable to any algorithm
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Outline

1. Review continuum limit assuming exact time evolution

2. Review existing methods for treating Trotter errors using renormalization [Marcela Carena,

Henry Lamm, Ying-Ying Li, Wanqiang Liu, PRD, arXiv:2107.01166]

→ Present simpler, alternative approach to treating Trotter errors

3. Present general procedure applicable to any time evolution algorithm
→ Statistically-Bounded Time Evolution Protocol

3 / 16

https://arxiv.org/abs/2107.01166


Hamiltonian LGT

Pure gauge Hamiltonian

HKS =
1

a

[
g2
t H̃E − 1

g2
s

H̃B

]
Lorentz invariance broken −→ gauge coupling for HE and HB different

Speed of light: c = gt
gs

Gauge coupling g =
√
gsgt

Speed of light c(a) ̸= 1 changes overall scale of H:

HKS =
c

a

[
g2H̃E − 1

g2
H̃B

]
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Hamiltonian LGT: Two Different Scales

Hamiltonian

ĤKS = atHKS

Temporal scale: at =
a
c

Momentum Operator

P̂KS = aPKS

Spatial scale: a (lattice spacing)

Different “rulers” for temporal and spatial quantities

Speed of light c(a): conversion factor between a and at

Dimensionless quantities measured on the lattice:

m̂ = at m , t̂ =
1

at
t , p̂ = ap, x̂ =

1

a
x

(Notation: hatted quantities are dimensionless)
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Renormalization: taking the continuum limit

1. Determine renormalization trajectory

a Choose value of bare coupling g(a)

b Tune bare parameters c(a), m(a) to reproduce
known dimensionless quantities

c Determine lattice spacing a: compare to known
dimensionful quantity

2. Calculate desired physical observable

a Calculate dimensionless ⟨Ô(t̂, a)⟩ and rescale by a
to convert to physical units

b Renormalize operator Ô(t) (if necessary)

c Extrapolate to continuum

Bare Quark Mass m(a)

B
ar

e
G

au
ge

C
ou

p
lin

g
g

(a
)

a3
a2

a1

Line of Constant Physics

a = 0 a1 a2 a3

Lattice Spacing

〈O
(a

)〉

Data

Continuum Value

6 / 16



Renormalization: taking the continuum limit

1. Determine renormalization trajectory

a Choose value of bare coupling g(a)

b Tune bare parameters c(a), m(a) to reproduce
known dimensionless quantities

c Determine lattice spacing a: compare to known
dimensionful quantity

2. Calculate desired physical observable

a Calculate dimensionless ⟨Ô(t̂, a)⟩ and rescale by a
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c Extrapolate to continuum

Bare Quark Mass m(a)

B
ar

e
G

au
ge

C
ou

p
lin

g
g

(a
)

a3
a2

a1

Line of Constant Physics

a = 0 a1 a2 a3

Lattice Spacing

〈O
(a

)〉

Data

Continuum Value

6 / 16



Renormalization: taking the continuum limit

1. Determine renormalization trajectory

a Choose value of bare coupling g(a)

b Tune bare parameters c(a), m(a) to reproduce
known dimensionless quantities

c Determine lattice spacing a: compare to known
dimensionful quantity

2. Calculate desired physical observable

a Calculate dimensionless ⟨Ô(t̂, a)⟩ and rescale by a
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Effective Hamiltonian with Trotter

Look at effective Hamiltonian simulated using Trotter [Marcela Carena, Henry Lamm, Ying-Ying Li,

Wanqiang Liu, PRD, arXiv:2107.01166]

e−i δ̂t(ĤE+ĤB) ≈ e−i δ̂t
2
ĤE e−i δ̂t ĤB e−i δ̂t

2
ĤE

≡ e−i δ̂t Ĥeff

where

Ĥeff(δt) = ĤE + ĤB +
δ̂2t
24

(
[ĤE , [ĤE , ĤB ]] + 2[ĤB , [ĤE , ĤB ]]

)
+ . . .

View as “temporal lattice”, treat δ̂t as parameter in the effective Hamiltonian

δ̂t ̸= 0 changes physics which changes values used in tuning and scale setting

g(a) → g(a, δt), m(a) → m(a, δt), . . .

Continuum physics achieved taking simultaneous limit lima→0 limδt→0

(Or, work at fixed anisotropy ξ = a/δt and extrap a → 0)

7 / 16
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Ĥeff(δt) = ĤE + ĤB +
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Euclidean simulations to assist renormalization

Main idea: relate Heff to Euclidean transfer matrix T on anisotropic lattice

Z =

∫
D[U]e−SE = TrTN

Tune bare parameters and scale set using Euclidean simulations by exploiting:

exp(−i δ̂tĤeff(δt)) ≈
δ̂t→−ia0

c
a

T

Limitations:

Relation exact for pure gauge only if one uses heat-kernel action

Only true for 2nd order PF with this precise Trotter splitting

Including fermions introduces O(a0) systematics

Does not reduce size and quality of quantum device needed

8 / 16



Euclidean simulations to assist renormalization

Main idea: relate Heff to Euclidean transfer matrix T on anisotropic lattice

Z =

∫
D[U]e−SE = TrTN

Tune bare parameters and scale set using Euclidean simulations by exploiting:

exp(−i δ̂tĤeff(δt)) ≈
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Alternative Approach

Look more closely at Heff :

Ĥeff(δt) = ĤE + ĤB +
δ̂2t
24

(
[ĤE , [ĤE , ĤB ]] + 2[ĤB , [ĤE , ĤB ]]

)
+ . . .

︸ ︷︷ ︸
irrelevant operators

Simple alternative renormalization trajectory:

Fix bare Trotter step-size δ̂t

Tune bare parameters assuming δ̂t = 0, only introduces O(a2) errors
→ simplifies renormalization to exact time evolution case

Trotter errors go to zero as O(a2) in continuum limit

9 / 16



Alternative Approach

Look more closely at Heff :
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Ĥeff(δt) = ĤE + ĤB +
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Extension to other algorithms?

Can we apply a similar procedure to simulations done using other simulation algorithms?

Consider Quantum Signal Processing as test case

10 / 16



Quantum Signal Processing: high level review

Hamiltonian input model: given |ψ⟩ → H |ψ⟩, one can implement f (H) |ψ⟩

This is achieved via a block encoding of H/λ where λ ≥ ∥H∥

UH =

(
H
λ ∗
∗ ∗

)
→

(
H
λ ∗
∗ ∗

)(
|ψ⟩
0

)
=

(
H
λ |ψ⟩
∗

)
Quantum Signal Processing → d calls to UH can implement f (H) |ψ⟩ where deg(f ) ∼ d

[G. Low, I. Chuang, Quantum, arXiv:1606.02685], [G. Low, I. Chuang, Quantum, arXiv:1610.06546]

Using Jacobi-Anger expansion for time evolution:

e−iHt ≈ J0(λt) + 2
d∑

k>0 even

(−i)k/2Jk(λt)Tk(H/λ)− 2i
d∑

k odd

(−i)(k−1)/2Jk(λt)Tk(H/λ)

Provably optimal scaling with t and ϵ [G. Low, I. Chuang, Quantum, arXiv:1606.02685]

Calls to UH = O
(
λt + log

1

ϵ

)

11 / 16
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This is achieved via a block encoding of H/λ where λ ≥ ∥H∥

UH =

(
H
λ ∗
∗ ∗

)
→

(
H
λ ∗
∗ ∗

)(
|ψ⟩
0

)
=

(
H
λ |ψ⟩
∗

)
Quantum Signal Processing → d calls to UH can implement f (H) |ψ⟩ where deg(f ) ∼ d
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Using Jacobi-Anger expansion for time evolution:

e−iHt ≈ J0(λt) + 2
d∑

k>0 even

(−i)k/2Jk(λt)Tk(H/λ)− 2i
d∑

k odd

(−i)(k−1)/2Jk(λt)Tk(H/λ)

Provably optimal scaling with t and ϵ [G. Low, I. Chuang, Quantum, arXiv:1606.02685]

Calls to UH = O
(
λt + log

1

ϵ

)
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Breakdown of previous approach to QSP

Can we apply previous approaches to control time evolution errors as a → 0 for QSP?

Approximate time evolution operator

e−iHt ≈ J0(λt) + 2
d∑

k>0 even

(−i)k/2Jk(λt)Tk(H/λ)− 2i
d∑

k odd

(−i)(k−1)/2Jk(λt)Tk(H/λ)

Previous picture relies on effective Hamiltonian formalism

Unclear how to proceed:
→ approximate evolution is not unitary, not clear what Heff is

We need an alternative more general approach
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Exact time evolution introduces no UV divergences

Define δ as parameter that controls time evolution error

For Trotter δ is the timestep δt

For QSP δ is ∼ 1/d , with d degree of the polynomial approx to e−iHt

Key insight: unlike taking a → 0, taking δ → 0 does not introduce divergences

lim
δ→0

g(a, δ) = g(a), lim
δ→0

m(a, δ) = m(a)

Implication: instead of treating δ ̸= 0 with machinery of renormalization, simply treat as
source of systematic uncertainty
→ driving time evolution error much below statistical precision effectively takes δ → 0
→ renormalization procedure simplifies to exact time evolution case
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Statistically-Bounded Time Evolution (SBTE) Protocol

Calculate time-dependent observable ⟨Ô(t, a)⟩ to uncertainty σO
→ sources of uncertainty from shot noise, device noise, etc.

If approximate time evolution error ϵO ≪ σO , we can neglect it

For some β > 1, we require

ϵO ≡ ∥e iHtÔ(0, a)e−iHt − U†
δ (t)Ô(0, a)Uδ(t)∥ ≤ σO

β

This is guaranteed by choosing time evolution operator error ϵsim as:

ϵsim = ∥e−iHt − Uδ(t)∥ ≤
(2β∥Ô(0, a)∥

σO

)−1

Key question: what is the additional computational cost to ensure this?

⟨O⟩
σO

ϵO = σO
β
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Examples: Product formula and Quantum Signal Processing

Set simulation error ϵsim =
(
2β∥O(0,a)∥

σO

)−1

SBTE applied to Product Formulas: extra cost not obviously negligible

Trotter number : NPF ≥
(

1

ϵsim

)1/p

α̃1/pt1+1/p

≥
(
2β∥O(0, a)∥

σO

)1/p

α̃1/pt1+1/p

SBTE applied to QSP: extra cost negligible a priori

Calls to Block Encoding : NQSP ≥ eλt

2
+ log

1

ϵsim
, λ > ∥H∥

≥ eλt

2
+ log(

2β∥O(0, a)∥
σO

)

⟨O⟩
σO ϵO = σO

β
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Summary and conclusions

Full cost of a quantum simulation requires cost of a → 0 limit

Previously, controlling impact of approximate time evolution errors only understood for
Trotter methods

We introduced a simple, general approach applicable to any quantum algorithm
→ Statistically-Bounded Time Evolution Protocol

Opens the door to performing end-to-end cost comparisons between different algorithms
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Hamiltonian LGT

Kogut-Susskind Hamiltonian

HKS =

[
g2
t

a
H̃E − 1

ag2
s

H̃B +
κ

a
H̃hop +mH̃M

]
Lorentz invariance broken −→ gauge coupling for HE and HB different

Speed of light: c = gt
gs

Gauge coupling g =
√
gsgt

Hopping coefficient κ
→ Euclidean simulations on anisotropic lattices have bare fermionic anisotropy factor γf
→ need γf so physical anisotropy ξ = a/a0 “seen” by gluons and fermions is the same
→ keeping track of γf in Transfer matrix implies need for κ(a) ̸= 1

Speed of light c(a) ̸= 1 changes overall scale of H:

HKS =
c

a

[
g2H̃E − 1

g2
H̃B +

κ

c
H̃hop + (

a

c
m)H̃M

]
≡ 1

at
ĤKS
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