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Background: mass spectrum of QCD
• quark confinement in Quantum ChromoDynamics (QCD) 
… low-energy d.o.f. are not quarks but composite particles (hadrons) 

• hadrons are much heavier than quarks 

u/d quark: ,   
π+ meson (u, d):  
proton (u, u, d):  

• nonperturbative calc. is essential to understand the properties of hadrons

mu ∼ 2 MeV md ∼ 5 MeV

140 MeV ≫ mu + md

938 MeV ≫ 2mu + md
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our motivation: 
Numerically investigate low-energy spectra of gauge theories such as QCD

u u d

u

u

d



Mass spectrum by lattice QCD
• conventional method:  

Monte Carlo simulation of the lattice gauge theory in Lagrangian formalism 

• obtain hadron masses from imaginary-time correlation functions 

    ̶>  effective mass: C(τ) = ∑
x

⟨𝒪(0,0) 𝒪(x, τ)⟩ ∼ e−Mτ meff(τ) := −
d
dτ

log C(τ) ≃ M

3

[HAL QCD collab. (2024)]
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FIG. 13. The e↵ective masses for five baryons in lattice units. The fit range and fit results with statistical errors are
shown by black lines with gray bands.

baryon are shown in Fig. 14, where the e↵ective mass is defined as

me↵(⌧) ⌘ log
C(B)(⌧)

C(B)(⌧ + 1)
(49)

with C(B)(⌧) = C(O)(⌧) or C(D)(⌧). We observe a good plateau for each baryon corresponding to the ground
state saturation.

The baryon masses are obtained by fitting the correlators by a single exponential functional form with the
fit ranges chosen from the plateau regions in the e↵ective mass plots. In Figs. 13 and 14, the fit results are
shown by black lines with gray bands denoting the statistical errors. The numerical fit results with statistical
errors and the fit ranges are summarized in Table V. We also consider several di↵erent choices for the fit ranges
by changing the lower and/or upper bounds of ranges by several time slices, and estimate the systematic
errors in the baryon masses. The resulting systematic errors for the octet baryons are given in Table V. The
relative magnitudes of the finite volume e↵ect are expected to be ⇠ (mPS/mB)·e�(mPSL)/(mPSL) < O(10�4)
from ChPT with mPS(mB) being a relevant PS meson mass (baryon mass) [64], and thus are negligible in
the current precision. In the case of the ⌦ mass, the systematic errors are estimated not only from the fit
range dependence but also from the analysis with the variational method as will be described below. This
additional study is performed because the ⌦ mass is determined with the highest precision and is used for
the scale setting.

TABLE V. The results of the masses of the five baryons in lattice unit. The central values as well as statistical
errors (in the first parentheses) are obtained from the analyses of the wall-source data with the fit ranges given in the
table. The systematic errors (in the second parentheses) are estimated from the fit range dependence. In the case of
the ⌦ mass, the result of the variational method is additionally used to estimate the systematic error.

baryon mass fit range

N 0.40179(64)(+4
�20) [14,20]

⇤ 0.47947(154)(+18
�95) [22,27]

⌃ 0.51414(237)(+11
�105) [22,27]

⌅ 0.56469(74)(+58
�0 ) [27,31]

⌦ 0.71510(46)(+93
�5 ) [26,30]

We present the details of the analysis with the variational method for the ⌦ baryon. The 2⇥ 2 correlator
matrix is calculated with the Z3 noise method and the tail-cut technique at 16 temporal source locations, and
thus the total number of measurements is 1600 confs⇥ 4 rotations⇥ 16 sources⇥ 2 propagations = 204, 800.

effective mass hadron spectrum



Hamiltonian formalism
😣 Monte Carlo method cannot be applied to models with complex actions 

̶> sign problem (finite density QCD, topological term, real-time evolution, …) 

💡 Tensor network and quantum computing in Hamiltonian formalism 
     can be complementary approaches! 

👍 free from the sign problem 
👍 analyze wave functions directly

aim of this work: 
compute the hadron mass spectrum 
in Hamiltonian formalism that is applicable  
even when the sign problem arises
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Short summary
• compute the mass spectrum of the 2-flavor Schwinger model by distinct methods 

(1) correlation-function scheme 

(2) one-point-function scheme 

(3) dispersion-relation scheme 

• θ-dependent spectra by  
these methods are  
consistent with each other  
and with analytic prediction
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[JHEP11 (2023) 231]  [JHEP09 (2024) 155]

cf.) bosonization analysis 
[Coleman (1976)] [Dashen et al. (1975)]
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Schwinger model with two fermions
Schwinger model = Quantum ElectroDynamics in 1+1d 

• simplest nontrivial gauge theory sharing some features with QCD 

 

• quantum numbers: 
  isospin ,  parity ,  G-parity  

•  and  are broken at  
̶> η becomes unstable 
      due to η→ππ decay and η-σ mixing

ℒ = −
1

4g2
FμνFμν +

θ
4π

ϵμνFμν +
Nf

∑
f=1

[iψ̄f γμ (∂μ + iAμ) ψf − mψ̄f ψf]

J P G = CeiπJy

P G θ ≠ 0
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 ̶> three “mesons” 

  :   

           :   

     :  

Nf = 2

πa = − iψ̄γ5τaψ JPG = 1−+

σ = ψ̄ψ JPG = 0++

η = − iψ̄γ5ψ JPG = 0−−

sign problem if θ ≠ 0



Calculation strategy
• setup: staggered fermion with open boundary 

   

• rewrite to the spin Hamiltonian 
by Jordan-Wigner transformation  
after solving Gauss law and gauge fixing 

• obtain the ground state as MPS by  
density-matrix renormalization group (DMRG)

H =
g2a
2

N−2

∑
n=0

(Ln +
θ

2π )
2

+
Nf

∑
f=1 [ −i

2a

N−2

∑
n=0

(χ†
f,nUn χf,n+1 − χ†

f,n+1U
†
n χf,n) + mlat

N−1

∑
n=0

(−1)n χ†
f,n χf,n]
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[Kogut & Susskind (1975)] 
[Dempsey et al. (2022)]

bond dim. for fixed truncation error

C++ library of ITensor is used 
[Fishman et al. (2022)]



Approximation of states by MPS
Matrix Product State (MPS) 

 

•  :   matrix with a spin index    (  : bond dimension) 

• Any state can be written as MPS by repeating SVD, but  in general. 

 

• Even with a cutoff , MPS efficiently approximates low-energy states 

of 1+1d gapped systems of any size . → numerical cost = 

|Ψ⟩ = ∑
{si}

Tr [A0(s0) A1(s1) ⋯] |s0 s1 ⋯⟩

Ai(si) Di−1 × Di si ∈ { ↑ , ↓ } Di

Di = O(2N/2)

|Ψ⟩ = ∑
{si}

Ψ(s0, s1, ⋯) |s0 s1 ⋯⟩

Di ≤ const

N O(ND3)

Ψ

s0

A0

s1

A1

s2

A2

s3

A3

s4

A4

s5

A5

ex.) spin-1/2, N=6 sites
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Two-point correlation function?
• In lattice QCD, correlation functions are measured with spatial integral 

̶> zero-momentum projection:  

• Equal-time correlator in Hamiltonian formalism: 

 

̶> effective mass:  

• Bond dim. must be large enough  
to see  behavior

∑
x

⟨𝒪(0,0)𝒪(x, τ)⟩ ∼ e−Mτ

C(r) = ⟨𝒪(0,0) 𝒪(r,0)⟩ ∼
1
rα

e−Mr

Meff(r) = −
d
dr

log C(r) ∼
α
r

+ M

1/r
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⚠ significant truncation effect

effective mass of π meson

M



One-point-function scheme
Regarding the boundary (defect) as the source of mesons,  
obtain the masses from the one-point functions 

• 1pt. function  measures the correlation with the boundary state  

•  has translational invariance in time direction 
̶> zero-momentum projection ̶> exponential decay 

👍 TN truncation effect is much smaller

⟨𝒪(x)⟩obc |bdry⟩

|bdry⟩

13

𝒪(x)boundary state
Euclidean space

pτ |bdry⟩ = 0

x

τ

cf.) wall source method

⟨𝒪(x)⟩obc ∼ ⟨bdry |e−Hx𝒪 |0⟩bulk ∼ e−Mx



Some technical improvement
•The boundary state  is specified by “the wings” attached to the lattice, 
which have the same quantum number as the target meson 

  e.g.) Dirichlet b.c. …  

         isospin-breaking b.c. … 

⟨bdry |

mwings ≫ m

mwings = m0 exp(±iΔγ5)

14

small mass large masslarge mass

𝒪(x)



Spectrum by the one-point function
• Dirichlet b.c. for the singlets / isospin-breaking b.c. for the triplets 

• Assuming ,  

the effective mass should be 

⟨𝒪(x)⟩ ∼ Ae−Mx + Be−(M+ΔM)x

∼ M +
ΔM

1 + CeΔMx

15

pion effective mass
summary

 N = 320, a = 0.25

m = 0.1, m0 = 10, Δ = 0.1
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Dispersion-relation scheme
Obtain the dispersion relation  directly 
from the excited states (momentum excitations of the mesons) 

• -th excited state  
= the lowest energy eigenstate satisfying  for  

• obtained by DMRG, adding the projection term to  

   ̶> cost function:        

• measure the energy  and the total momentum 

E = K2 + M2

ℓ |Ψℓ⟩

⟨Ψℓ′￼
|Ψℓ⟩ = 0 ℓ′￼ = 0, 1, ⋯, ℓ − 1

H

Hℓ = H + W
ℓ−1

∑
ℓ′￼=0

|Ψℓ′￼
⟩⟨Ψℓ′￼

| ⟨Ψℓ |H |Ψℓ⟩ + W
ℓ−1

∑
ℓ′￼=0

⟨Ψℓ′￼
|Ψℓ⟩

2
W > 0

E K = ∑
f

∫ dx ψ†
f (i∂x − A1)ψf
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[Stoudenmire & White (2012)] 
[Banuls et al. (2013)]



Energy spectrum at θ= 0
• energy gap:   

• momentum square:  

•identify the states by measuring quantum numbers:  ,  ,  

ΔEℓ = Eℓ − E0

ΔK2
ℓ = ⟨K2⟩ℓ − ⟨K2⟩0

J2 Jz G = CeiπJy

energy momentum2

18

triplets → π? 
singlets → σ or η?



Quantum numbers

• isospin:        

• charge conjugation: 
  = exchange particles/anti-particles 
  = exchange even/odd sites and flip each spin 
  = 1-site translation and  operator 

   

   due to the boundary 

• G-parity: 

Ja =
1
2 ∫ dx ψ† τa ψ [H, J2] = [H, Jz] = 0

σx

C :=
Nf

∏
f=1 (

N−1

∏
n=0

σx
f,n) (

N−2

∏
n=0

(SWAP)f;N−2−n,N−1−n)
[H, C] ≠ 0

G = C exp(iπJy)
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0 1 2 3 4 5

0 1 2 3 45

1-site translation

= (SWAP)f;j,k =
1
2 (1f,j1f,k + ∑

a

σa
f,jσ

a
f,k)

j k

k j



Result of quantum numbers

• triplets: ,  ,   

̶> pion ( ) 

• singlets: ,  , 

 ( ) ̶> sigma meson ( ) 
 ( ) ̶> eta meson ( )

J2 = 2 Jz = (0, ± 1) G > 0

JPG = 1−+

J2 = 0 Jz = 0

G > 0 ℓ = 13,14,22 JPG = 0++

G < 0 ℓ = 18,23 JPG = 0−−

triplets

singlets
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results at θ = 0

J
H
E
P
1
1
(
2
0
2
3
)
2
3
1

! J2 Jz G P

1 2.00000004 0.99999997 0.27872443 -6.819→10→8

2 2.00000012 -0.00000000 0.27872416 -6.819→10→8

3 2.00000004 -0.99999996 0.27872443 -6.819→10→8

4 2.00000007 0.99999999 0.27736066 7.850→10→8

5 2.00000006 0.00000000 0.27736104 7.850→10→8

6 2.00000009 -0.99999998 0.27736066 7.850→10→8

7 2.00000010 1.00000000 0.27536687 -8.838→10→8

8 2.00000002 0.00000000 0.27536702 -8.837→10→8

9 2.00000007 -0.99999998 0.27536687 -8.838→10→8

10 2.00000007 0.99999998 0.27356274 9.856→10→8

11 2.00000005 0.00000001 0.27356277 9.856→10→8

12 2.00000007 -0.99999999 0.27356274 9.856→10→8

15 1.99999942 0.99999966 0.27173470 -1.077→10→7

16 2.00000052 0.00000000 0.27173482 -1.077→10→7

17 2.00000015 -1.00000003 0.27173470 -1.077→10→7

19 2.00009067 1.00004377 0.27717104 -3.022→10→8

20 2.00002578 -0.00000004 0.27717020 -3.023→10→8

21 2.00003465 -1.00001622 0.27717104 -3.023→10→8

Table 1. The quantum numbers of the isospin triplet states. The index ! comes from the level of
each state in the original basis. The rows of the table are separated into each triplet.

! J2 Jz G P

0 0.00000003 -0.00000000 0.27984227 3.896→10→7

13 0.00000003 0.00000000 0.27865844 1.273→10→7

14 0.00000003 0.00000000 0.27508176 -2.765→10→8

18 0.00000028 0.00000006 -0.27390909 -6.372→10→7

22 0.00001537 0.00000115 0.26678987 7.990→10→8

23 0.00003607 -0.00000482 -0.27664779 5.715→10→7

Table 2. The quantum numbers of the isospin singlet states.
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Extension to θ≠ 0
• G-parity is no longer the quantum number ̶> η disappears 

• singlet projection to obtain σ with reasonable computational cost 

  Hℓ = H + W
ℓ−1

∑
ℓ′￼=0

|Ψℓ′￼
⟩⟨Ψℓ′￼

|+WJJ2

21

momentum2

cf.) quantum-number preserving DMRG



Result of dispersion relation

• plot  against  and fit the data by  for each mesonΔEℓ ΔK2
ℓ ΔE = b2ΔK2 + M2

22

energy vs momentum2 Around , σ is 
contaminated by a remnant 
of η due to the mixing

θ/2π = 0.2

summary
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Summary
• The two schemes give consistent results and look promising 

• consistent with predictions by the bosonization 
        Mπ(θ) ∝ |cos(θ/2) |2/3 Mσ(θ)/Mπ(θ) = 3

24

[Coleman (1976)] [Dashen et al. (1975)]

Monte Carlo (reweighting) 
[Fukaya & Onogi (2003)]

calculation, we approximate the integral of Ssubtr
N (!!,m) by

the trapezoidal rule for the discrete set of !! points, but this
does not seem to be the reason for the large fluctuation in the
"/(2#)!0.5 region. The main nonperturbative contribution
comes from DetN and Ssubtr

N (!!,m) gives only perturbative
effects of order !!"2.
We suspect that this large fluctuation is an example of the

well-known phase problem. Simply increasing the statistics
might not improve the situation.
Of course in application to QCD, it will be important to

evaluate Ssubtr
N (!!,m) and other observables more precisely.

B. ! meson correlator and U„1… problem
As the final subject, we would like to present the result of

our exploratory measurement of the $ meson mass in order
to study the topological structure. The $ propagator consists
of two parts:

%$$&#"2 ! tr" '3
1
D '3

1
D # $ $4 ! tr" '3

1
D # tr" '3

1
D # $ ,

(36)

where the first term is the same as the flavor nonsinglet #
propagator and the second term gives the ‘‘hair-pin’’ or dis-
connected contribution to the flavor singlet operator. Because
the number of physical space-time points is only 16%16, we
compute the ‘‘hair-pin’’ contribution by brute force, namely
by solving the fermion propagator for all points without re-
lying on the noise method *40+ or Kuramashi method *41+.
Figure 15 shows the contribution of the second term in

each sector, whereas Fig. 16 shows the full (symmetrized) $
propagator at m#0.2 and "#0. We also present effective
mass plot in Fig. 17. We find that the fall of $ propagator is
steeper than that of # which gives qualitatively consistent
results with the U(1) problem, although it suffers from both
the theoretical errors as well as the large statistical errors
making quantitative studies difficult. One of the major
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of the " dependence in the continuum theory, where the normaliza-
tion is fitted by the lattice results. For "/(2#)&0.5, the pion mass
is proportional to cos("/2)2/3, which is in complete agreement with
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applicable even in large θ region!

our work (DMRG)



Discussion and prospect
• Large volume limit and continuum limit 

• 2+1 dimensions 

• Analyses using the wave functions for the scattering problem 

• Real-time evolution to study the decay of unstable mesons 

• TN method: Time-Dependent Variational Principle? 

• TN-QC hybrid method: encoding TN states into quantum circuits? 

• Full Quantum algorithm to find excited states?
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[Haegeman et al. (2011)] 
[Yang & White (2020)]

[Shirakawa et al. (2021)]

[Schwägerl et al. (2025)]



Small N: N = 10, a = 0.2 (20 qubits)
• The lowest excitations  
are not consistent with pion triplets  

• ⚠  is smaller than 

1−+

L = a(N − 1) = 1.8 1/Mπ ∼ 2.4
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Small N: N = 10, a = 0.4 (20 qubits)
• The lowest excitations  
become consistent with pion triplets  

•

1−+

L = a(N − 1) = 3.6 > 1/Mπ ∼ 2.4
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Dispersion relation for L=3.6
•  ̶> pions? 

•  ̶> sigma meson? 

• solutions of  

 

ℓ = (1,2,3), (5,6,7)

ℓ = 8

E = b2K2 + M2

Mπ = 0.332, b = 1.35

Mσ = 1.38, b := 1

28



Middle N: N = 20, a = 0.4 (40 qubits)
• The behavior of the pions  
approaches the case of  ! 

• sigma and eta mesons start to appear

N = 100

29

L = a(N − 1) = 7.6



Dispersion relation for L=7.6
•  ̶> pions? 

•  ̶> sigma meson? 

•  ̶> eta meson? 

• fitting/solutions of  

 

 

ℓ = (1,2,3), (4,5,6), (10,11,12)

ℓ = 8,13

ℓ = 7,9

E = b2K2 + M2

Mπ = 0.40(2), b = 1.18(2)

Mσ = 0.843, b = 1.23

Mη = 0.889, b = 1.05

30

consistent with  for N=100Mπ = 0.426(2)



Thank you for listening.
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