Computing composite-particle mass spectra in the Hamiltonian formalism

Akira Matsumoto (Osaka Metropolitan U, RIKEN iTHEMS) collaboration with

Etsuko Itou (YITP Kyoto U, RIKEN iTHEMS) and Yuya Tanizaki (YITP Kyoto U)

JHEP11 (2023) 231 [2307.16655]

JHEP09 (2024) 155 [2407.11391]

QuantHEP 2025, 29 September 2025 @Lawrence Berkeley National Lab

Background: mass spectrum of QCD

- quark confinement in Quantum ChromoDynamics (QCD)
 low-energy d.o.f. are not quarks but composite particles (hadrons)
- hadrons are much heavier than quarks

```
u/d quark: m_u \sim 2 MeV, m_d \sim 5 MeV \pi^+ meson (u, d): 140 MeV \gg m_u + m_d proton (u, u, d): 938 MeV \gg 2m_u + m_d
```


nonperturbative calc. is essential to understand the properties of hadrons

our motivation:

Numerically investigate low-energy spectra of gauge theories such as QCD

Mass spectrum by lattice QCD

- conventional method:
 - Monte Carlo simulation of the lattice gauge theory in Lagrangian formalism
- obtain hadron masses from imaginary-time correlation functions

$$C(\tau) = \sum \langle \mathcal{O}(0,0) \mathcal{O}(x,\tau) \rangle \sim e^{-M\tau} \longrightarrow \text{effective mass: } m_{\text{eff}}(\tau) := -\frac{d}{d\tau} \log C(\tau) \simeq M$$

[HAL QCD collab. (2024)]

Hamiltonian formalism

- 100 Monte Carlo method cannot be applied to models with complex actions
 - -> sign problem (finite density QCD, topological term, real-time evolution, ···)
- Tensor network and quantum computing in Hamiltonian formalism can be complementary approaches!
 - tree from the sign problem
 - analyze wave functions directly

aim of this work:

compute the hadron mass spectrum in Hamiltonian formalism that is applicable even when the sign problem arises

Short summary

- compute the mass spectrum of the 2-flavor Schwinger model by distinct methods
 - (1) correlation-function scheme
 - (2) one-point-function scheme
 - (3) dispersion-relation scheme

- θ-dependent spectra by these methods are consistent with each other and with analytic prediction
 - cf.) bosonization analysis [Coleman (1976)] [Dashen et al. (1975)]

[JHEP11 (2023) 231] [JHEP09 (2024) 155]

Outline

- 1. 2-flavor Schwinger model and calculation strategy
- 2. One-point-function scheme
- 3. Dispersion-relation scheme
- 4. Summary

Outline

1. 2-flavor Schwinger model and calculation strategy

- 2. One-point-function scheme
- 3. Dispersion-relation scheme
- 4. Summary

Schwinger model with two fermions

<u>Schwinger model = Quantum ElectroDynamics in 1+1d</u>

simplest nontrivial gauge theory sharing some features with QCD

$$\mathcal{L} = -\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \frac{\theta}{4\pi} \epsilon_{\mu\nu} F^{\mu\nu} + \sum_{f=1}^{N_f} \left[i \bar{\psi}_f \gamma^\mu \left(\partial_\mu + i A_\mu \right) \psi_f - m \bar{\psi}_f \psi_f \right] \qquad \text{sign problem if } \theta \neq 0$$

- quantum numbers:
 - isospin J, parity P, G-parity $G = Ce^{i\pi J_y}$
- P and G are broken at $\theta \neq 0$
 - —> η becomes unstable due to $\eta \rightarrow \pi \, \pi$ decay and η σ mixing

$$N_f=2$$
 —> three "mesons"
$$\pi_a=-i\bar{\psi}\gamma^5\tau_a\psi \ : \ J^{PG}=1^{-+}$$

$$\sigma=\bar{\psi}\psi \ : \ J^{PG}=0^{++}$$

$$\eta = -i\bar{\psi}\gamma^5\psi \quad : \quad J^{PG} = 0^{--}$$

Calculation strategy

setup: staggered fermion with open boundary

$$H = \frac{g^2 a}{2} \sum_{n=0}^{N-2} \left(L_n + \frac{\theta}{2\pi} \right)^2 + \sum_{f=1}^{N_f} \left[\frac{-i}{2a} \sum_{n=0}^{N-2} \left(\chi_{f,n}^{\dagger} U_n \chi_{f,n+1} - \chi_{f,n+1}^{\dagger} U_n^{\dagger} \chi_{f,n} \right) + m_{\text{lat}} \sum_{n=0}^{N-1} (-1)^n \chi_{f,n}^{\dagger} \chi_{f,n} \right]$$

- rewrite to the spin Hamiltonian by Jordan-Wigner transformation after solving Gauss law and gauge fixing
- obtain the ground state as MPS by density-matrix renormalization group (DMRG)

[Kogut & Susskind (1975)] [Dempsey et al. (2022)]

bond dim. for fixed truncation error

Approximation of states by MPS

Matrix Product State (MPS)

$$|\Psi\rangle = \sum_{\{s_i\}} \operatorname{Tr} \left[A_0(s_0) A_1(s_1) \cdots \right] |s_0 s_1 \cdots\rangle$$

- . $A_i(s_i)$: $D_{i-1} \times D_i$ matrix with a spin index $s_i \in \{\uparrow, \downarrow\}$ (D_i : bond dimension)
- . Any state can be written as MPS by repeating SVD, but $D_i = O(2^{N/2})$ in general.

$$|\Psi\rangle = \sum_{\{s_i\}} \Psi(s_0, s_1, \cdots) |s_0 s_1 \cdots\rangle$$

. Even with a cutoff $D_i \leq \text{const}$, MPS efficiently approximates low-energy states of 1+1d gapped systems of any size N. \rightarrow numerical cost = $O(ND^3)$

Outline

1. 2-flavor Schwinger model and calculation strategy

2. One-point-function scheme

- 3. Dispersion-relation scheme
- 4. Summary

Two-point correlation function?

- In lattice QCD, correlation functions are measured with spatial integral
 - —> zero-momentum projection: $\sum_{x} \langle \mathcal{O}(0,0)\mathcal{O}(x,\tau) \rangle \sim e^{-M\tau}$
- Equal-time correlator in Hamiltonian formalism:

$$C(r) = \langle \mathcal{O}(0,0) \mathcal{O}(r,0) \rangle \sim \frac{1}{r^{\alpha}} e^{-Mr}$$

—> effective mass:
$$M_{\text{eff}}(r) = -\frac{d}{dr} \log C(r) \sim \frac{\alpha}{r} + M$$

• Bond dim. must be large enough to see 1/r behavior

significant truncation effect

effective mass of π meson

One-point-function scheme

Regarding the boundary (defect) as the source of mesons, obtain the masses from the one-point functions

- . 1pt. function $\langle \mathcal{O}(x) \rangle_{\rm obc}$ measures the correlation with the boundary state |bdry>
- . |bdry> has translational invariance in time direction
 - --> zero-momentum projection --> exponential decay

$$\langle \mathcal{O}(x) \rangle_{\text{obc}} \sim \langle \text{bdry} | e^{-Hx} \mathcal{O} | 0 \rangle_{\text{bulk}} \sim e^{-Mx}$$

TN truncation effect is much smaller

Euclidean space

cf.) wall source method

Some technical improvement

The boundary state (bdry | is specified by "the wings" attached to the lattice, which have the same quantum number as the target meson

e.g.) Dirichlet b.c.
$$m_{\rm wings}\gg m$$
 isospin-breaking b.c. $m_{\rm wings}=m_0\exp(\pm i\Delta\gamma^5)$

Spectrum by the one-point function

- Dirichlet b.c. for the singlets / isospin-breaking b.c. for the triplets
- . Assuming $\langle \mathcal{O}(x) \rangle \sim Ae^{-Mx} + Be^{-(M+\Delta M)x}$, the effective mass should be $\sim M + \frac{\Delta M}{1 + Ce^{\Delta Mx}}$

summary

Outline

- 1. 2-flavor Schwinger model and calculation strategy
- 2. One-point-function scheme
- 3. Dispersion-relation scheme
- 4. Summary

Dispersion-relation scheme

Obtain the dispersion relation $E = \sqrt{K^2 + M^2}$ directly from the excited states (momentum excitations of the mesons)

- . ℓ -th excited state $|\Psi_{\ell}\rangle$
 - = the lowest energy eigenstate satisfying $\langle \Psi_{\ell'} | \Psi_{\ell} \rangle = 0$ for $\ell' = 0, 1, \dots, \ell-1$
- obtained by DMRG, adding the projection term to H

[Stoudenmire & White (2012)] [Banuls et al. (2013)]

$$H_{\ell} = H + W \sum_{\ell'=0}^{\ell-1} |\Psi_{\ell'}\rangle \langle \Psi_{\ell'}| \longrightarrow \text{cost function: } \langle \Psi_{\ell}|H|\Psi_{\ell}\rangle + W \sum_{\ell'=0}^{\ell-1} \left|\langle \Psi_{\ell'}|\Psi_{\ell}\rangle\right|^2 \qquad W > 0$$

measure the energy E and the total momentum $K = \sum_f \int dx \, \psi_f^\dagger (i\partial_x - A_1) \psi_f$

Energy spectrum at $\theta = 0$

- . energy gap: $\Delta E_{\ell} = E_{\ell} E_0$
- . momentum square: $\Delta K_{\ell}^2 = \langle K^2 \rangle_{\ell} \langle K^2 \rangle_0$
- .identify the states by measuring quantum numbers: \mathbf{J}^2 , J_z , $G=Ce^{i\pi J_y}$

Quantum numbers

isospin:
$$J_a = \frac{1}{2} \int dx \ \psi^{\dagger} \tau^a \psi$$
 $[H, \mathbf{J}^2] = [H, J_z] = 0$

- charge conjugation:
 - = exchange particles/anti-particles
 - = exchange even/odd sites and flip each spin
 - = 1-site translation and σ^x operator

$$C := \prod_{f=1}^{N_f} \left(\prod_{n=0}^{N-1} \sigma_{f,n}^{x} \right) \left(\prod_{n=0}^{N-2} (SWAP)_{f;N-2-n,N-1-n} \right)$$

 $[H, C] \neq 0$ due to the boundary

. G-parity: $G = C \exp(i\pi J_y)$

1-site translation

$$\sum_{k}^{j} \left(\text{SWAP} \right)_{f;j,k} = \frac{1}{2} \left(\mathbf{1}_{f,j} \mathbf{1}_{f,k} + \sum_{a} \sigma_{f,j}^{a} \sigma_{f,k}^{a} \right)$$

Result of quantum numbers

results at $\theta = 0$

. triplets:
$$\mathbf{J}^2=2,\ J_z=(0,\pm 1),\ G>0$$
 triplets —> pion ($J^{PG}=1^{-+}$)

. singlets:
$$\mathbf{J}^2=0,\ J_z=0,$$

$$G>0\ (\ell=13,14,22) \longrightarrow \text{sigma meson}\ (J^{PG}=0^{++})$$

$$G<0\ (\ell=18,23) \longrightarrow \text{eta meson}\ (J^{PG}=0^{--})$$

singlets

ℓ	$oxed{J^2}$	J_z	G	P
0	0.00000003	-0.00000000	0.27984227	3.896×10^{-7}
13	0.00000003	0.00000000	0.27865844	1.273×10^{-7}
14	0.00000003	0.00000000	0.27508176	-2.765×10^{-8}
18	0.00000028	0.00000006	-0.27390909	-6.372×10^{-7}
22	0.00001537	0.00000115	0.26678987	7.990×10^{-8}
23	0.00003607	-0.00000482	-0.27664779	5.715×10^{-7}

ℓ	$oldsymbol{J}^2$	J_z	G	P
1	2.00000004	0.99999997	0.27872443	-6.819×10^{-8}
2	2.00000012	-0.00000000	0.27872416	-6.819×10^{-8}
3	2.00000004	-0.99999996	0.27872443	-6.819×10^{-8}
4	2.00000007	0.99999999	0.27736066	7.850×10^{-8}
5	2.00000006	0.00000000	0.27736104	7.850×10^{-8}
6	2.00000009	-0.99999998	0.27736066	7.850×10^{-8}
7	2.00000010	1.00000000	0.27536687	-8.838×10^{-8}
8	2.00000002	0.00000000	0.27536702	-8.837×10^{-8}
9	2.00000007	-0.99999998	0.27536687	-8.838×10^{-8}
10	2.00000007	0.99999998	0.27356274	9.856×10^{-8}
11	2.00000005	0.00000001	0.27356277	9.856×10^{-8}
12	2.00000007	-0.99999999	0.27356274	9.856×10^{-8}
15	1.99999942	0.99999966	0.27173470	-1.077×10^{-7}
16	2.00000052	0.00000000	0.27173482	-1.077×10^{-7}
17	2.00000015	-1.00000003	0.27173470	-1.077×10^{-7}
19	2.00009067	1.00004377	0.27717104	-3.022×10^{-8}
20	2.00002578	-0.00000004	0.27717020	-3.023×10^{-8}
21	2.00003465	-1.00001622	0.27717104	-3.023×10^{-8}

Extension to $\theta \neq 0$

- G-parity is no longer the quantum number —> η disappears
- singlet projection to obtain σ with reasonable computational cost

$$H_{\ell} = H + W \sum_{\ell'=0}^{\ell-1} |\Psi_{\ell'}\rangle\langle\Psi_{\ell'}| + W_{J}J^{2}$$

cf.) quantum-number preserving DMRG

momentum²

Result of dispersion relation

. plot ΔE_{ℓ} against ΔK_{ℓ}^2 and fit the data by $\Delta E = \sqrt{b^2 \Delta K^2 + M^2}$ for each meson

Around $\theta/2\pi=0.2$, σ is contaminated by a remnant of η due to the mixing

Outline

- 1. 2-flavor Schwinger model and calculation strategy
- 2. One-point-function scheme
- 3. Dispersion-relation scheme

4. Summary

Summary

- The two schemes give consistent results and look promising
- consistent with predictions by the bosonization [Coleman (1976)] [Dashen et al. (1975)]

$$M_{\pi}(\theta) \propto |\cos(\theta/2)|^{2/3}$$
 $M_{\sigma}(\theta)/M_{\pi}(\theta) = \sqrt{3}$

Discussion and prospect

Large volume limit and continuum limit

[Schwägerl et al. (2025)]

- 2+1 dimensions
- Analyses using the wave functions for the scattering problem
- Real-time evolution to study the decay of unstable mesons
 - TN method: Time-Dependent Variational Principle?

[Haegeman et al. (2011)] [Yang & White (2020)]

TN-QC hybrid method: encoding TN states into quantum circuits?

[Shirakawa et al. (2021)]

• Full Quantum algorithm to find excited states?

Small N: N = 10, a = 0.2 (20 qubits)

- The lowest excitations
 are not consistent with pion triplets 1⁻⁺
- . L = a(N-1) = 1.8 is smaller than $1/M_{\pi} \sim 2.4$

Small N: N = 10, a = 0.4 (20 qubits)

The lowest excitations
 become consistent with pion triplets 1⁻⁺

$$L = a(N-1) = 3.6 > 1/M_{\pi} \sim 2.4$$

Dispersion relation for L=3.6

- $\ell = (1,2,3), (5,6,7)$ —> pions?
- $\ell = 8$ —> sigma meson?
- . solutions of $E = \sqrt{b^2 K^2 + M^2}$

$$M_{\pi} = 0.332, b = 1.35$$

$$M_{\sigma} = 1.38, b := 1$$

Middle N: N = 20, a = 0.4 (40 qubits)

- The behavior of the pions approaches the case of N = 100!
- sigma and eta mesons start to appear

Dispersion relation for L=7.6

- $\ell = (1,2,3), (4,5,6), (10,11,12)$ —> pions?
- $\ell = 8,13$ —> sigma meson?
- $\ell = 7.9$ —> eta meson?
- . fitting/solutions of $E = \sqrt{b^2 K^2 + M^2}$

$$M_{\pi} = 0.40(2), b = 1.18(2)$$

$$M_{\sigma} = 0.843, b = 1.23$$

$$M_{\eta} = 0.889, b = 1.05$$

consistent with $M_{\pi} = 0.426(2)$ for N=100

Thank you for listening.