LHC AND DARK MATTER SEARCHES: STATUS AND PERSPECTIVES

MICHELE PAPUCCI (LBNL)

3RD BERKELEY WORKSHOP ON DM DD, DEC 5, 2016

LHC SUSY SEARCHES = DM SEARCHES

LHC SUSY SEARCHES = DM SEARCHES

Limits on parent non-DM particles

Look for Missing $E_T \rightarrow$ invisible particles escaping detection (DM)

SEARCHING FOR DM AT THE LHC

 LHC IS A "MEDIATOR" DIRECT DETECTION PROBE → DM ONLY PROBED INDIRECTLY

SEARCHING FOR DM AT THE LHC

 LHC IS A "MEDIATOR" DIRECT DETECTION PROBE → DM ONLY PROBED INDIRECTLY

 STRONG LIMITS FOR COLORED MEDIATORS (> 1 TEV)

SEARCHING FOR DM AT THE LHC

 LHC IS A "MEDIATOR" DIRECT DETECTION PROBE → DM ONLY PROBED INDIRECTLY

 WEAK LIMITS FOR WEAKLY COUPLED MEDIATORS (FEW x 100 GEV)

LHC AS DM MACHINE

- Mono-jet idea is an old one (early 80s)
- More recently: use it to probe the DM-SM interactions model independently (Beltran et al. + many many others)
- It's the same "blob" in direct detection and LHC production...

LHC AS DM MACHINE

- LHC results on σ vs. M_{DM} plane
- strong constraints, competitive with DD in SI, better for SD!

MONO-X CRAZE

- Many Mono-X searches:
 - mono-jet
 - mono-photon
 - mono-Z
 - mono-W
 - mono-Higgs
 - mono-b
 - mono-top
- When are they useful? Are all of them powerful? How do they compare with traditional searches using Missing E_T ?

NOT SO FAST...

- Mono-jet idea is an old one (early 80s)
- More recently: use it to probe the DM-SM interactions model independently (Beltran et al. + many many others)
- It's the same "blob" in direct detection and LHC production...
- ... but energies are VERY different!

NOT SO FAST...

It's the same "blob"

describing e+e→ hadrons

at low energy and deep
inelastic scattering, but
you need a model (QCD)

that tells you what's inside
the "blob" to connect the
two experiments

NEED MODELS TO DESCRIBE EFFECTIVE INTERACTIONS BETWEEN SM AND DM

THE NEED FOR (SIMPLIFIED) MODELS

- Various models producing the same blob
- Direct detection: 2 parameters, m_{DM} and coupling strength ($\leftrightarrow \sigma_N$)
- Models: at least 4
 parameters, often more
- Mapping of LHC results in (σ, m)-plane subject to assumptions

What to do?

THE NEED FOR (SIMPLIFIED) MODELS

- Various models producing the same blob
- Direct detection: 2 parameters, m_{DM} and coupling strength ($\leftrightarrow \sigma_N$)
- Models: at least 4
 parameters, often more
- Mapping of LHC results in (σ, m)-plane subject to assumptions

What to do?

THE NEED FOR (SIMPLIFIED) MODELS

- With models one can compare different LHC searches and find when mono-X searches to complement existing ones
- Residual parameter
 dependence significantly
 changes the limits when
 presented in (σ_{DD}, m)-plane

...MANY MANY THEORY PAPERS AND 2 JOINT ATLAS+CMS+THEORY WORKING GROUPS LATER...

Abercombie et al. 2015: models/parameters/MC samples/assumptions/plots to use

s-channel and t-channel models fleshed out, rest of models (mostly relevant for mono-Z,h,W,t) still requires work

(s-channel, $\delta\Gamma$ =0)

(s-channel, $\delta\Gamma$ =0)

(s-channel, $\delta\Gamma$ =0)

(s-channel, $\delta\Gamma$ =0)

Parameters chosen to make mono-X look best against DD and non-mono-X LHC searches (di-jets here)

(s-channel, $\delta\Gamma$ =0)

Parameters chosen to make mono-X look best against DD and non-mono-X LHC searches (di-jets here)

Going forward: expect these limits to improve by O(10) by the end of LHC

HOW TO READ THOSE PLOTS

S-CHANNEL MODEL LIMITS CHEATSHEET

HOW TO READ THOSE PLOTS

S-CHANNEL MODEL LIMITS CHEATSHEET

keep lowering g_q and M_m together and LHC limits disappear altogether!!

$$\sigma_{LHC}\Big|_{2M_{DM} \ll M_{m}} \propto \frac{g_{q}^{2}g_{DM}^{2}}{g_{DM}^{2} + g_{q}^{2}} \frac{1}{M_{m}^{5-6}}$$

$$\sigma_{LHC}\Big|_{2M_{DM} \ll M_{m} \ll E_{T, \text{cut}}} \propto \frac{g_{q}^{2}g_{DM}^{2}}{g_{DM}^{2} + g_{q}^{2}} \frac{1}{E_{T, \text{cut}}^{5-6}}$$

MONO-Z,W,H

- Only useful for models when Z,W,H comes from decay of mediator(s)
- Many models can provide these mono-X signatures, but they are competitive against other searches only in a few of them

SPECIFIC MODELS: WIMP DM

"ELECTROWEAKINOS"

see G. Kribs talk

- DM as Combination of Weak
 Singlet+Doublet+Triplet (a la MSSM)
- Relevant for Direct Detection: there
 are points in parameter space where
 DM coupling to Z and Higgs can be
 tuned to vanish (for non-tuned pure
 state case as a target see Graham's
 talk)
- Pushing σ_N down makes these models progressively more tuned → never excludable but less and less compelling (like the finetuning story for the Higgs)
- By end of 1T-scale experiments, tuning in 1 part in 100 territory

Cheung, Hall, Pinner, Ruderman

SPECIFIC MODELS: WIMP DM

"ELECTROWEAKINOS"

see G. Kribs talk

- One can tune out DM interactions with Z and h, but cannot also tune out electroweak couplings of DM partners (charginos and other neutralinos)
- LHC can produce those and probe the blind spot regions IF -inos are not too heavy
- projected limits are well below TeV for LHC reach
- for heavier masses indirect detection a possibility

Cheung, Hall, Pinner, Ruderman

HIDDEN SECTOR DM & LHC

(HIDDEN VALLEYS & CO)

- LHC has advantage if heavy mediators are in energy range
 - in general spectacular long cascades of SUSY-like signals with or without long lived particles
 - Limits on different interactions than used in Direct Det.' → orthogonal plane in parameter space
 - If no heavy mediators in reach:
 - <10GeV mediators (dark photons, etc.) are best probed at intensity frontier exp'
 - 10-100GeV LHC may improve over LEP in the long run? (work needed)

DM @ LHC VS DIRECT DET

- LHC has the potential for probing Dark Matter at and below the weak scale
- It is really a "mediator" machine → best limits if the particles mediating DM interactions with the SM are heavy but in the energy range of the LHC (few x 100 GeV → few x TeV)
- LHC is sensitive on the structure of interactions \rightarrow Effective operator approach is too simplistic to convert limits to σ_{DD} vs m_{DM}
- Direct detection and LHC are complementary strategies and plenty of parameter space to probe (even at low DM mass) with DD even after LHC has ended its program

