

Evolution of the European strategy for dark matter search with cryogenic (crystal) detectors

Perspective, challenges and plans with:

CaWO₄ (CRESST)

Germanium (EDELWEISS)

Jules Gascon (IPNLyon, Université Lyon 1 + CNRS/IN2P3)

* Thanks to: Klaus Eitel (EURECA spokesp.) Federica Petricca (CRESST spokesp.)

CONTEXT & STRATEGY

EURECA CDR (2014)

- European Underground Rare Event
 Calorimeter Array: Federation of
 European efforts for direct DM
 Search with cryogenic
 experiments
- Conceptual Design Report[Phys. Dark Univ. 3 (2014) 41]
- Goal: 2x10⁻⁴⁷ pb @ 50 GeV (cMSSM inspired WIMPs)
- Common cryostat for 1-ton size experiment
- <1 evt/keV/ton/y background</p>
- Variety of target: Ge + CaWO₄
- Site: LSM (Fréjus tunnel)

Change of scene since 2014 CDR

- LSM extension delays
- No signs of cMSSM SUSY @LHC: need to widen the search
- Rapid progress of xenon at high mass
- Identification of "Low-WIMP mass" region above the Solar
 v floor, ideally suited for low-threshold cryogenic detectors

New EURECA strategy
targeted at low mass
& challenges associated
with low thresholds

Choice of hunting ground

The GeV region

The ⁸B region

Updated EURECA strategy

Mockup tower to test detector /

tower interface

- Aim: 1-20 GeV mass range, ideally suited for cryogenic detectors
- First step: tune the CaWO₄ and Ge detectors to fully exploit the full potential for cryogenic detectors for low thresholds
- Exploit current facilities at LSM and LNGS (with few kg) until external radioactive bkgs require major upgrades
- Larger exposure (>1000 kg.day): prepare detector adaptation to very-low background SuperCDMS
 - @ SNOLAB environment currently being designed
 - Preparation made possible by openness of SuperCDMS to share design info & MC code with EURECA

CRESST DETECTOR CHALLENGES AND PLANS

CRESST Collaboration

CRESST-II detectors

Cryogenic Rare Event Search with Superconducting Thermometers

Scintillating CaWO₄ crystals as target

Target crystals operated as cryogenic calorimeters (~15mK)

Separate **cryogenic light detector** to detect the scintillation light signal

Energy deposition:

mainly phonons(almost independent of the type of particle)

Measurement of deposited energy

•small fraction into scintillation light (characteristic of the type of particle)

Particle discrimination

Two simultaneous signals from the two transition edge sensors (TES)

CRESST Experimental setup

18 300g detectors in 2014

SQUID Readout

CRESST-II Results

- Based on 300g crystal with best nuclear recoil threshold (307 eV)
- World-leading result for masses below 1.7 GeV/c²
- First experiment to explore masses in the sub-GeV/c² range
- Exploit different sensitivities of O, Ca and W recoils

CRESST-III detectors

Change of strategy to improve sensitivity to low masses

Detector design optimization:

- Clean self-grown crystals
- Small crystals (20x20x10)mm³
 (25g)
- 100 eV threshold design goal
- Small light detector (20x20)mm²
- 6 modules with <100 eV threshold running at LNGS

CRESST-III preparation

Construction kit for a CRESST-III module

CRESST-III modules during assembly

CRESST-III modules installed in the LNGS facility.
Data taking since summer 2016

CRESST-III phase I goals

Projected sensitivity for 50kg days (1 year) with design goal threshold (100eV)

CRESST-III phase II

- Material screening and purification of raw material for crystal production
 - Factor 100 reduction of background
- Upgrade of LNGS facility to operate 100 detectors
 - 1000 kg days in 2 years

EDELWEISS DETECTOR CHALLENGES AND PLANS

EDELWEISS collaboration

CNRS/IN2P3

CNRS/INP

CNRS

CEA/IRFU

CEA/IRAMIS

IKP EKP IPE

JINR DUBNA

Univ. OXFORD

Univ. SHEFFIELD

EDELWEISS-III

- Direct detection of WIMPs, germanium target
- 20 kg Ge total (largest for DM search), 870g units
- Ionization + Heat
 - Position independent (~thermal) heat measurement
 - Emphasis on complete e + h+ charge readout
- Simple & robust design
 - Important for scalability to large arrays
 - Initially designed for >20 GeV WIMP search, extended down to 5 GeV given achieved resolutions EPJC 76 (2016) 548
- Laboratoire Souterrain de Modane
 - Deepest in Europe : 5 μ/m²/day

Fully InterDigitized electrode design

- \sim 870g detectors (ϕ =70 h=40 mm)
- 2 GeNTDs heat sensor per detector ,
- Electrodes: concentric Al rings (2 mm spacing) covering all faces
- XeF₂ surface treatment to ensure low leakage current (<1 fA) between adjacent electrodes

J Low Temp Phys (2014) 176: 182-187

Surface event rejection

Phys Lett B 681 (2009) 305-309

- Bulk event: charges collected by C₁
 and C₂; V₁ and V₂ act as veto
- Surface events: charges collected by either C₁V₁ or C₂V₂

Nuclear recoil calibration + discrimination

Gamma rejection

&

Surface rejection

- γ rejection factor: $< 5.6 \times 10^{-6}$ [J Low Temp Phys (2012) 167: 1056-1062] Updated now to $< 2.5 \times 10^{-6}$ with additional detectors + statistics
- Surface evts rejection (210 Pb+ 210 Bi β , 210 Po α , 206 Pb recoils): < 4 x 10⁻⁵

EDELWEISS-III 2014-2015 data taking

161 days of physics data with 24 FIDs: >3000 kgd total

Low electron-recoil bkg: 19 FIDs used in first measurement of cosmogenic production of ³H in Ge [arxiv: 1607.04560]

8 lowest threshold FIDs used for lowmass WIMP search

Low-Mass analysis

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Improvement by x20 to x150 between 7 and 10 GeV wrt EDELWEISS-II
- Limited by heat-only background: identification and rejection using the σ=230 eV resolution on ionization
- Ionization resolution is key for rejection
- Heat resolution is key for low thresholds

Strategy for low-mass WIMP searches

- 1. High Voltage: Amplify heat signal to reduce threshold
 - 8 V —> 100 V
- 2. Lower the intrinsic heat threshold
 - Improved heat sensors
 - 500 eV (RMS) —> 100 eV (RMS)
- 3. Reduce background from heat-only events
 - /100 heat only rate
- 4. Extend background ID to lower energy
 - Improved ionization measurement
 - 200 eV (RMS) -> 100/50 eV (RMS)

Challenge #1: High-voltage

Heat thresholds improved using larger bias voltages

$$\boldsymbol{E_{TOTAL}} = \boldsymbol{E_{RECOIL}} + \boldsymbol{E_{ION}} \frac{\Delta \boldsymbol{V}}{3 Volt}$$

- Heat signal boosted by Neganov-Luke effect (~Joule heating, factor [1+V_{bias}/3])
- Loss of ionization-based bkg discrimination: method benefits low-mass searches only

Challenge #2: heat sensor resolution

JLTP 184 (2016) 299

Better understanding of heat signal

- Thermal modeling of signal, verified with dedicated R&D
- Identification of sensitivity to ballistic phonons
- Identification of parasitic heat capacity

Sensitivity of 200 nV/keV
 (x6 wrt present FIDs)
 achieved on 250 g test
 detectors

Challenge #3: heat-only events

- Dominant (+reproducible) background at low energy
- Noise, cryogenics, stress from detector suspension: excluded as sources of this background
- Remaining suspect: stress from glueing, avoided via:
- Two "deported NTD", glued on separate sapphire wafer
- Photo-lithographied high-Ω NbSi TES, sensitive to athermal phonons
- Following promising tests, present cooldown @ LSM of 5 detectors with these new designs

GeV-range prospects with goals 1+2(+3)

Future: reduce backgrounds, increase mass

- EDELWEISS sensitivity for 35 ton.day = 100 kg x 1 year
- [J Low Temp Phys 184 (2016) 308]
- Suppression of Heat-Only becomes essential in GeV range
- In 5-20 GeV range, need:
 - Improve ionization resolution (for discrimination) from σ=230 to 100 eV
 - reduction of neutron + bulk electron recoils reduction by /10 wrt present setup
 - → achievable in future in SuperCDMS environment planned @SNOLAB

- Study implication of
 SuperCDMS tower design
 +HEMT readout on
 EDELWEISS detectors
- Collaboration on CUTE test facility @SNOLAB
- Study improvement of charge readout with HEMTs

Goal 4: ionization resolution

Transitioning from JFET to HEMT

- Lower intrinsic noise, low heat load
- Works at 4K: shorter cables reduces capacitance and improves resolution
- Considered by EDW/HARD (resolution)
 [XB+AB NIMA 787 (2015) 51]
 and SuperCDMS (heat load)
 [AP, JLTP 176 (2014) 466 and 911]
- Successful HEMT amplifier with sub-100 eV_{RMS} ion. resolution
 [A. Phipps, arXiv: 1611.09712, collaboration between SuperCDMS and EDW]
- Step#1: Upgrade EDW ionization readout with this new design
- Step#2: Electrode design to reduce detector capacitance to reach 50 eV_{RMS}
- Increase of electrode spacing from 2 to 4 mm already successfully implemented

A. Phipps et al, arXiv: 1611.09712

FID842 2 mm spacing

FID824 4 mm spacing

Entering the ⁸B region

■ Projection with σ =100 eV ion. resolution, 100 kg x 1 year

⁸B region exploration with FID+HEMT

- Separation of ⁸B CNS signal (~6 GeV WIMP, black)
 with σ_{ion} = 50 eV
 (wrt present ~200 eV)
- E resolution: ~10% @ 1 keV_{ee} spectral separation for WIMP searches close to 6 GeV
- Simulated BDT analysis:
 78 "bkg-free" ⁸B events in 1 t.y
 (8 in 100 kg x 1 year)
- Paving the way for a detailed measurement of this important (and yet to be observed) background from ⁸B v CNS

Conclusions

- The European collaboration for cryogenic crystal detectors (EURECA) has updated its objectives relative to its 2014 CDR
- Emphasis for 1-20 GeV WIMP masses, for which the detector technology is ideally suited (low threshold on heat signal)
- 2017-2018 prospects in the GeV-WIMP range: 10⁻¹ cm⁻² @1.5 GeV with both CRESST and EDELWEIS, achievable in present facilities @ LSM and LNGS
 - Factor 10 improvement in a future 1000 kgd CRESST-III phase-II
- Larger exposure with lower external background: collaboration with SuperCDMS@SNOLAB
 - Adaptation to SuperCDMS tower design under study
- Prospects for WIMPs in the ⁸B region
 - ~100 kg low-capacitance FIDs+HEMTs at SNOLAB to complement nicely the SuperCDMS-SNOLAB reach with clear "bkg-free" ⁸B CNS signal

BACKUP

Low-Mass analysis

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

Data-driven background models based on sidebands

Low-Mass analysis: surface background

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

Low-Mass analysis: fiducial electron recoil

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

Low-Mass analysis: neutron background

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

Low-Mass analysis: heat-only background

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

What can be done with 1 kgyear Ge

 Calculated assuming present EDELWEISS background (including Heat-only)

⁸B region with xenon

- Z
- LZ WIMP Signal Region Example
 We must also understand 8B signal

- Xenon experiments may reach ⁸B floor in coming years
 - Very small efficiency limited by photon collection
 - B backgrounds difficult to control: very little spectral response

Measurement WITH good energy resolution and background rejection is needed to properly control this background