Weak Vector Boson Measurements at the LHC (run 1)

Alexey Drobizhev Physics 290E UC Berkeley Wednesday 4 May 2016

The W and Z bosons

- Massive vector gauge bosons
- Mediators of weak interaction—stems from Standard Model's foundation around local gauge symmetries
- $m_W = 80.385 \pm 0.015 \text{ GeV}$
- $m_Z = 91.1876 \pm 0.0021 \text{ GeV}$
- $Q_W = \pm 1 e$
- $Q_Z = 0 e$
- Spin = 1
- $Gamma(W) = 2.085 \pm 0.042 \text{ GeV}$
- Gamma(Z) = 2.3952 ± 0.0023 GeV

LHC Data

- 7TeV or 8TeV energy in Run 1
- High luminosity
 - 50ns bunch spacing, more p's

CMS Integrated Luminosity, pp

- great for discovery,
- makes EW precision physics challenging...

pp Cross Sections

$$\sigma(pp \to X) \sim \sum_{i,j} \int \int dx_1 dx_2 f_i(x_1, \mu_f) f_j(x_2, \mu_f) \hat{\sigma}_{ij}(s, \mu_f^2/Q^2, \mu_r^2/\mu_f^2)$$

non-perturbative perturbative

• Measurements of W and Z cross sections provide constraints on PDF, test models.

The $W^{\pm} \rightarrow lv$ and $Z/\gamma * \rightarrow ll$ Drell-Yan processes in ATLAS

Phys. Rev. D85, 072004 (2012) Phys.Rev.Lett. 109 (2012) 012001

Production of single W and Z bosons

• Lowest order: Drell-Yan process from valence quark and sea antiquark in pp collision:

- $\sim 1.4x$ more W⁺ than W⁻ from 2x more u than d in pp + dilution from symmetric sea-sea production).
- Sensitive to higher-order strong effects, proton structure, electroweak corrections... ⁶

Cross sections: big picture

Cross sections analysis and definitions

• $W^{\pm} \rightarrow lv \text{ and } Z/\gamma * \rightarrow ll \ (l = e, \mu)$

- differential cross sections measured as a function of W decay lepton pseudorapidity and Z boson rapidity
- Fiducial vs total cross-sections:

candidate events $\downarrow \quad \downarrow$ # background events $\sigma_{\text{fid}} = \frac{N - B}{C_{W/Z} \cdot L_{\text{int}}} \leftarrow \text{integrated luminosity}$ $\uparrow \text{ efficiency from MC + correction from data}$

$$\sigma_{\text{tot}} = \sigma_{W/Z} \times BR(W/Z \to \ell \nu / \ell \ell) = \frac{\sigma_{\text{fid}}}{A_{W/Z}}$$

acceptance from MC and uncertainties \uparrow

Fiducialization with kinematic parameters:

• Fiducial regions for σ_{fid} :

$W ightarrow e \nu$:	$p_{T,e} > 20 \ \text{GeV}, \ \eta_e < 2.47,$	
	excluding $1.37 < \eta_e < 1.52$,	
	$p_{T,\nu} > 25 \text{ GeV}, m_T > 40 \text{ GeV};$	
$W ightarrow \mu u$:	$p_{T,\mu} > 20 \text{ GeV}, \eta_{\mu} < 2.4,$	$ > = \sqrt{2p_{T,\ell}p_{T,\nu}} \cdot (1 - \cos \Delta \phi_{\ell,\nu}) $
	$p_{T,\nu} > 25 \text{ GeV}, m_T > 40 \text{ GeV};$	
$Z \rightarrow ee$:	$p_{T,e} > 20 \text{ GeV}$, both $ \eta_e < 2.47$,	where $\Delta \varphi_{l,v}$ is the
(central)	excluding $1.37 < \eta_e < 1.52$,	azimuthal separation
	$66 < m_{ee} < 116 \mathrm{GeV};$	hetween land y
Forward $Z \rightarrow ee$: $p_{T,e} > 20$ GeV, one $ \eta_e < 2.47$,	
	excluding $1.37 < \eta_e < 1.52$,	trajectories
	other $2.5 < \eta_e < 4.9$,	
	$66 < m_{ee} < 116 \mathrm{GeV};$	
$Z ightarrow \mu \mu$:	$p_{T,\mu} > 20 \text{ GeV}$, both $ \eta_{\mu} < 2.4$,	
	$66 < m_{\mu\mu} < 116 \mathrm{GeV}$.	

Efficiency calculation

- "Tag and probe method:"
- $C_{W/Z}$ calculated from simulation
 - corrected for differences in reconstruction, trigger efficiencies between simulation and data
- Tagging: where possible, efficiency derived from $Z \rightarrow ll$ and $W \rightarrow ev$, triggering and selecting "pure" events:
 - using only one lepton for $Z \rightarrow ll$
 - only events with significant missing E_T in $W \rightarrow ev$.
- Probing: second loosely-defined lepton used as probe to estimate efficiencies after background subtraction.

$$\sigma_{\rm fid} = \frac{N - B}{C_{W/Z} \cdot L_{\rm int}}$$

$$_{W/Z} = rac{N_{
m MC,rec}}{N_{
m MC,gen,cut}}$$

- N_{MC,rec} = sum of weights after simulation, reconstruction and selection;
- N_{MC,gen,cut} at generator level after fiducial cuts

Total cross section and acceptance

$$\sigma_{\rm tot} = \sigma_{W/Z} \times BR(W/Z \to \ell \nu / \ell \ell) = \frac{\sigma_{\rm fid}}{A_{W/Z}}$$

- Acceptance $A_{W/Z}$ used to extrapolate from measured fiducialized value to full kinematic volume
- $A_{W/Z}$ derived from MC (Mc@Nlo), simulation and PDF (CTEQ 6.6 set) uncertainties, additional measurement uncertainty...
- Analogously to $C_{W/Z}$:

$$A_{W/Z} = rac{N_{
m MC,gen,cut}}{N_{
m MC,gen,all}}$$

- Where $N_{MC,gen,all}$ is the sum of weights of all generated MC events

Monte Carlo results: cross section

Physics process	Generator	$\sigma \cdot BR [nb]$	
$W^+ o \ell^+ \nu \ (\ell = e, \mu)$	Mc@Nlo	$6.16{\pm}0.31$	NNLO
$W^- ightarrow \ell^- ar{ u} \; (\ell = e, \mu)$	Mc@Nlo	$4.30{\pm}0.21$	NNLO
$Z/\gamma^* \to \ell \ell (m_{\ell \ell} > 60 \text{ GeV}, \ \ell = e, \mu)$	Mc@Nlo	$0.99{\pm}0.05$	NNLO
W ightarrow au u	Pythia	$10.46{\pm}0.52$	NNLO
$Z/\gamma^* \to \tau \tau (m_{\tau \tau} > 60 \text{ GeV})$	Pythia	$0.99{\pm}0.05$	NNLO
$tar{t}$	Mc@Nlo	$0.165\substack{+0.011\\-0.016}$	\approx NNLO
WW	HERWIG	$0.045 {\pm} 0.003$	NLO
WZ	HERWIG	$0.0185{\pm}0.0009$	NLO
ZZ	HERWIG	$0.0060 {\pm} 0.0003$	NLO
Dijet (e channel, $\hat{p}_{\rm T} > 15 \text{ GeV}$)	Pythia	1.2×10^6	LO
Dijet (μ channel, $\hat{p}_{\rm T} > 8 \text{ GeV}$)	Pythia	10.6×10^{6}	LO
$b\bar{b}~(\mu$ channel, $\hat{p}_{\rm T} > 18~{\rm GeV},~p_{\rm T}(\mu) > 15~{\rm GeV})$	Pythia	73.9	LO
$c\bar{c} \ (\mu \text{ channel}, \hat{p}_{\mathrm{T}} > 18 \text{ GeV}, p_{\mathrm{T}}(\mu) > 15 \text{ GeV})$	Pythia	28.4	LO

Monte Carlo results: A_{W/Z} and extrapolation

	A	$\delta A_{ m err}^{ m pdf}$	$\delta A_{ m sets}^{ m pdf}$	$\delta A_{ m hs}$	$\delta A_{ m ps}$	$\delta A_{ m tot}$
		Elec	tron chan	inels		
W^+	0.478	1.0	0.7	0.9	0.8	1.7
W^{-}	0.452	1.5	1.1	0.2	0.8	2.0
W^{\pm}	0.467	1.0	0.5	0.6	0.8	1.5
Z	0.447	1.7	0.6	0.2	0.7	2.0
	Muon channels					
W^+	0.495	1.0	0.8	0.6	0.8	1.6
W^{-}	0.470	1.5	1.1	0.3	0.8	2.1
W^{\pm}	0.485	1.0	0.5	0.4	0.8	1.5
Z	0.487	1.8	0.6	0.2	0.7	2.0

Acceptance values (A) and their relative uncertainties (δA) in percent for W and Z production in electron and muon channels. The various components of the uncertainty are defined in the text. The total uncertainty (δA_{tot}) is obtained as the quadratic sum of the four parts.

y_Z^{min}	y_Z^{max}	$Z ightarrow \mu \mu$	Central $Z \to ee$	Forward $Z \rightarrow ee$
0.0	0.4	1.000(0)	0.954(1)	-
0.4	0.8	1.000(0)	0.903(1)	-
0.8	1.2	0.984(1)	0.855(2)	-
1.2	1.6	0.849(2)	0.746(3)	0.103(1)
1.6	2.0	0.578(5)	0.512(4)	0.327(3)
2.0	2.4	0.207(5)	0.273(5)	0.590(7)
2.4	2.8	-	-	0.797(1)
2.8	3.6	-	-	0.404(4)

Central values and absolute uncertainties (in parenthesis) of extrapolation correction factors from fiducial regions to full lepton pseudorapidity η phase space. The factors are provided in bins of Z boson rapidity for $Z \rightarrow \mu\mu$ and for central and forward $Z \rightarrow ee$ measurements.

Electron event selection

14

$W \rightarrow ev$: transverse energy and mass

- Distributions after all cuts.
- Simulation/QCD background normalized to data/fit.
- QCD background shapes taken from
 - background control samples (E_T).
 - MC simulation with relaxed electron identification criteria (m_T).

$Z \rightarrow ee$: invariant mass and Z rapidity

- Distributions after all cuts.
- Simulation/QCD background normalized to the data/fit.
- QCD background shapes taken from background control samples.

$Z \rightarrow ee:$ electron pseudorapidity

- Distributions after all cuts.
- Simulation/QCD background normalized to the data/fit.

Muon event selection

	N	B	$C_{W/Z}$	$A_{W/Z}$
W^+	84514	6600 ± 600	0.796 ± 0.016	0.495 ± 0.008
W^{-}	55234	5700 ± 600	0.779 ± 0.015	0.470 ± 0.010
W^{\pm}	139748	12300 ± 1100	0.789 ± 0.015	0.485 ± 0.007
Z	11709	86 ± 32	0.782 ± 0.007	0.487 ± 0.010

$W \rightarrow \mu v$: kinematic variables and transverse mass

$Z \rightarrow \mu\mu$: invariant mass and Z rapidity

σ_{fid} and σ_{tot} results

	$\sigma^{ m fid}_W \cdot {f BR}(W o \mu u) [{f nb}]$
	sta sys lum
W^+	$3.002\pm0.011\pm0.050\pm0.102$
W^{-}	$1.948 \pm 0.009 \pm 0.034 \pm 0.066$
W^{\pm}	$4.949 \pm 0.015 \pm 0.081 \pm 0.168$
	$\sigma^{ ext{tot}}_W \cdot \ \mathbf{BR}(W o \mu u) [\mathbf{nb}]$
	sta sys lum acc
W^+	$6.062 \pm 0.023 \pm 0.101 \pm 0.206 \pm 0.099$
W^{-}	$4.145 \pm 0.020 \pm 0.072 \pm 0.141 \pm 0.086$
W^{\pm}	$10.210 \pm 0.030 \pm 0.166 \pm 0.347 \pm 0.153$
	$\sigma^{\mathrm{fid}}_{Z/\gamma^*} \cdot \mathbf{BR}(Z/\gamma^* o \mu\mu) [\mathbf{nb}]$
	sta sys lum
Z/γ^*	$0.456 \pm 0.004 \pm 0.004 \pm 0.015$
	$\sigma^{ m tot}_{Z/\gamma^*} \cdot \ {f BR}(Z/\gamma^* o \mu\mu) \ [{f nb}]$
	sta sys lum acc
Z/γ^*	$0.935 \pm 0.009 \pm 0.009 \pm 0.032 \pm 0.019$

	$\sigma^{\mathrm{fid}}_W \cdot \mathbf{BR}(W o e u) [\mathbf{nb}]$
	sta sys lum
W^+	$2.898 \pm 0.011 \pm 0.052 \pm 0.099$
W^{-}	$1.893 \pm 0.009 \pm 0.038 \pm 0.064$
W^{\pm}	$4.791 \pm 0.014 \pm 0.089 \pm 0.163$
	$\sigma^{ ext{tot}}_W \cdot \mathbf{BR}(W o e u) [\mathbf{nb}]$
	sta sys lum acc
W^+	$6.063 \pm 0.023 \pm 0.108 \pm 0.206 \pm 0.104$
W^{-}	$4.191 \pm 0.020 \pm 0.085 \pm 0.142 \pm 0.084$
W^{\pm}	$10.255 \pm 0.031 \pm 0.190 \pm 0.349 \pm 0.156$
	$\sigma^{\mathrm{fid}}_{Z/\gamma^*} \cdot \mathbf{BR}(Z/\gamma^* \to ee) [\mathrm{nb}]$
	sta sys lum
Z/γ^*	$0.426 \pm 0.004 \pm 0.012 \pm 0.014$
	$\sigma^{ m tot}_{Z/\gamma^*} \cdot \ {f BR}(Z/\gamma^* o ee) \ [{f nb}]$
	sta sys lum acc
Z/γ^*	$0.952 \pm 0.010 \pm 0.026 \pm 0.032 \pm 0.019$

Combining data

- Measured σ's can be combined for both e and µ channels to decrease uncertainty assuming lepton universality.
- 59 differential cross section measurements
- 30 sources of correlated uncertainty
- Special averaging procedure minimizes $\chi 2$:

$$\begin{split} \chi^2 &= \sum_{k,i} w_k^i \frac{\left[m^i - \left(\mu_k^i + \sum_j \gamma_{j,k}^i m^i b_j\right)\right]^2}{(\delta_{\mathrm{sta},k}^i)^2 \mu_k^i (m^i - \sum_j \gamma_{j,k}^i m^i b_j) + (\delta_{\mathrm{unc},k}^i m^i)^2} \\ &+ \sum_j b_j^2. \end{split}$$

 $\chi^{2/dof} = 33.9/29$ (all), 15.5/9 (Z), 10.2/10 (W⁺), 7.0/10 (W⁻)

Final differential cross section results and theory comparison

• $d\sigma/d|y_Z|$ and $d\sigma/d|\eta_l|$ compared to NNLO theoretical predictions with various PDF sets.

• Kinematic requirements:

 $66 < m_{ll} < 116 \text{ GeV}, p_{T,l} > 20 \text{ GeV}, p_{T,v} > 25 \text{ GeV}, \text{ and } m_T > 40 \text{ GeV}$

W charge asymmetry

- Measured W charge asymmetry as a function of lepton pseudorapidity compared to NNLO theoretical predictions with various PDF sets.
- Calculated from differential cross section data:

$$A_{\ell}(\eta_{\ell}) = \frac{\mathrm{d}\sigma_{W^{+}}/\mathrm{d}\eta_{\ell} - \mathrm{d}\sigma_{W^{-}}/\mathrm{d}\eta_{\ell}}{\mathrm{d}\sigma_{W^{+}}/\mathrm{d}\eta_{\ell} + \mathrm{d}\sigma_{W^{-}}/\mathrm{d}\eta_{\ell}}$$

• Kinematic requirements:

 $p_{T,l} > 20 \text{ GeV}, p_{T,v} > 25 \text{ GeV},$ and $m_T > 40 \text{ GeV}$

Integrated cross sections

Ratios of cross sections: e-µ universality

Results:

 $R_Z = 0.9991 \pm 0.0024$

 \rightarrow using R_Z (world avg.) as constraint, R_W (experimental) = 0.999 ± 0.020

Combined cross section ratios

- ratios of W^+/W^- , W^+/Z , W^-/Z and $(W^+ + W^-)/Z$, combining the electron and muon final states.
- Experimental uncertainty (yellow) includes systematics; total uncertainty (green) includes statistics and acceptance correction. Uncertainties are 68% CL.

QCD: strange quark density of the proton

• At Bjorken x = 0.023, initial QCD fit scale $Q_0^2 = 1.9 \text{ GeV}^2$:

$$r_s = \frac{(s+\overline{s})}{2\overline{d}} = 1.00^{+0.25}_{-0.28}$$

- Consistent with other experiments/
- Combined HERA, ATLAS, CDF:

$$r_s = 0.95 \pm 0.17_{exp}$$

- Light quark sea at low x is flavor symmetric
- total sea

$$x\Sigma = 2x(\bar{u} + \bar{d} + \bar{s})$$

enhanced by ~8% compared to situation where $s \sim 0.5d$ (models).

Similar measurements with other experiments...

W charge asymmetry

- ATLAS and CMS: small-medium rapidity, light quarks.
- LHCb: high rapidity

Integrated cross sections

Combined cross section ratios

		experiment	theory
ATLAS	7 TeV	10.893 ± 0.079 (stat) ± 0.110 (syst) ± 0.116 (acc)	40 74 + 0 04
CMS	7 TeV	10.54 ± 0.07 (stat) ± 0.08 (syst) ± 0.16 (th)	10.74 ± 0.04
CMS	8 TeV	10.65 ± 0.11 (stat) ± 0.23 (syst)	11.04 ± 0.04

Many other interesting measurements...

- Diboson production
 - WW
 - ZZ
 - WZ
- Single and double W's and Z's + jets
- $Z \rightarrow 41$
- $pp \rightarrow lv\gamma$
- $pp \rightarrow ll\gamma, pp \rightarrow \nu\nu\gamma$
- Vector Boson Fusion and Scattering
- EW precision measurements: W mass, Z mass, θ_W

backup

Systematic uncertainties

	$\delta\sigma_{W^{\pm}}$	$\delta\sigma_{W+}$	$\delta\sigma_{W-}$	$\delta\sigma_Z$
Trigger	0.4	0.4	0.4	<0.1
Electron reconstruction	0.8	0.8	0.8	1.6
Electron identification	0.9	0.8	1.1	1.8
Electron isolation	0.3	0.3	0.3	
Electron energy scale and resolution	0.5	0.5	0.5	0.2
Non-operational LAr channels	0.4	0.4	0.4	0.8
Charge misidentification	0.0	0.1	0.1	0.6
QCD background	0.4	0.4	0.4	0.7
$Electroweak+t\bar{t}$ background	0.2	0.2	0.2	< 0.1
$E_{\rm T}^{\rm miss}$ scale and resolution	0.8	0.7	1.0	
Pile-up modeling	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
$C_{W/Z}$ theoretical uncertainty	0.6	0.6	0.6	0.3
Total experimental uncertainty	1.8	1.8	2.0	2.7
$A_{W/Z}$ theoretical uncertainty	1.5	1.7	2.0	2.0
Total excluding luminosity	2.3	2.4	2.8	3.3
Luminosity		3.	4	

	$\delta \sigma_{W^{\pm}}$	$\delta \sigma_{W+}$	$\delta \sigma_{W-}$	$\delta\sigma_Z$
Trigger	0.5	0.5	0.5	0.1
Muon reconstruction	0.3	0.3	0.3	0.6
Muon isolation	0.2	0.2	0.2	0.3
Muon $p_{\rm T}$ resolution	0.04	0.03	0.05	0.02
Muon $p_{\rm T}$ scale	0.4	0.6	0.6	0.2
QCD background	0.6	0.5	0.8	0.3
$Electroweak+t\bar{t}$ background	0.4	0.3	0.4	0.02
$E_{\rm T}^{\rm miss}$ resolution and scale	0.5	0.4	0.6	-
Pile-up modeling	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
$C_{W/Z}$ theoretical uncertainty	0.8	0.8	0.7	0.3
Total experimental uncertainty	1.6	1.7	1.7	0.9
$A_{W/Z}$ theoretical uncertainty	1.5	1.6	2.1	2.0
Total excluding luminosity	2.1	2.3	2.6	2.2
Luminosity		3.4	1	

Combining data (the other channels)

Combined cross sections with correlation matrices

6	$\sigma^{\mathrm{fid}}_W \cdot \mathbf{BR}(W o \ell u) [\mathbf{nb}]$
	$ \eta_{\ell} < 2.5, p_{T,\ell} > 20 \text{ GeV},$
	$p_{T,\nu} > 25 \mathrm{GeV} \mathrm{and} m_T > 40 \mathrm{GeV}$
2	sta sys lum acc
W^+	$3.110 \pm 0.008 \pm 0.036 \pm 0.106 \pm 0.004$
W^{-}	$2.017 \pm 0.007 \pm 0.028 \pm 0.069 \pm 0.002$
W^{\pm}	$5.127 \pm 0.011 \pm 0.061 \pm 0.174 \pm 0.005$
2	$\sigma^{\mathrm{fid}}_{Z/\gamma^*} \cdot \mathbf{BR}(Z/\gamma^* o \ell\ell) [\mathrm{nb}]$
	$ \eta_{\ell} < 2.5, p_{T,\ell} > 20 { m GeV}$
1.	and $66 < m_{\ell\ell} < 116 \text{ GeV}$
47	sta sys lum acc
Z/γ^*	$0.479 \pm 0.003 \pm 0.005 \pm 0.016 \pm 0.001$

TABLE X. Combined cross sections times leptonic branching ratios for W^+ , W^- , W^{\pm} and Z/γ^* production within the corresponding fiducial regions of the measurements. The uncertainties denote the statistical (sta), the experimental systematic (sys), the luminosity (lum), and the extrapolation (acc) uncertainties.

$Z W^+ W^-$	$Z W^+ W^-$
Z 1.00 0.94 0.93	Z 1.00 0.48 0.44
$W^+ 0.94 1.00 0.97$	$W^+ 0.48 1.00 0.79$
W^- 0.93 0.97 1.00	W^- 0.44 0.79 1.00

TABLE XI. Correlation matrix for the measurements of the Z, W^+ and W^- cross sections in the fiducial volume, for the full uncertainty (left) and for all but the luminosity uncertainty (right).

$\sigma^{ ext{tot}}_W \cdot \mathbf{BR}(W o \ell u) [\mathbf{nb}]$										
		sta	sys	lum	acc					
W^+	$6.048 \pm$	- 0.016 -	± 0.072 :	\pm 0.206 \pm	= 0.096					
W^{-}	$4.160~\pm$	- 0.014 -	± 0.057 :	$\pm 0.141 \pm$	- 0.083					
W^{\pm}	10.207 =	± 0.021	± 0.121	± 0.347 :	± 0.164					
$\sigma^{ m tot}_{Z/\gamma^*} \cdot \ {f BR}(Z/\gamma^* o \ell\ell) \ [{f nb}]$										
	$66 < m_{\ell\ell} < 116 \text{GeV}$									
		sta	sys	lum	acc					
Z/γ^*	$0.937 \pm$	= 0.006 =	± 0.009	\pm 0.032 \pm	= 0.016					

TABLE XII. Combined total cross sections times leptonic branching ratios for W^+ , W^- , W and Z/γ^* production. The uncertainties denote the statistical (sta), the experimental systematic (sys), the luminosity (lum), and the extrapolation (acc) uncertainties.

	Z	W^+	W^-		Z	W^+	W^{-}
Z	1.00	0.91	0.91	Z	1.00	0.67	0.71
W^+	0.91	1.00	0.91	W^+	0.67	1.00	0.70
W^-	0.91	0.91	1.00	W^{-}	0.71	0.70	1.00

TABLE XIII. Correlation matrix for the measurements of the total Z, W^+ and W^- cross sections for the full uncertainty (left) and for all but the luminosity uncertainty (right).