Jet Substructure

4/27/2016 Physics 290E Brian Amadio As the center-of-mass energy of the LHC increases, it becomes harder to resolve the decay products of increasingly boosted SM particles.

For 1.6 TeV Z'→ tt, very few of the top quarks can be fully resolved with R=0.4 jets

Collider energies and heavy resonance limits are going up → The future of jets lies in jet substructure!

From BOOST 2015 Summary Talk

Many BSM searches benefit from jet substructure methods.

Jet substructure is a wide, active, and rapidly expanding field.

The most straightforward jet substructure variable is mass.

$$m^2 = \left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2$$

Boosted resonance: $m_{jet} \approx m_{resonance}$

QCD jet: ???

QCD jets are not massless!

For finite-radius jets, the mass is sensitive to unassociated radiation in the event.

Trimming is one of several jet grooming methods used to reduce this sensitivity.

Unassociated radiation should be ≈evenly distributed in the event, while radiation from parent partons is clustered near the parent. Use k_T for reclustering to keep more FSR.

Mass-drop/filtering takes advantage of the fact that large changes in mass are exponentially suppressed in QCD showers.

Sudakov form factor
$$\Delta(t) = exp\left[-\int_{t_0}^t \frac{dt'}{t'} dz \frac{\alpha_s}{2\pi} \mathcal{P}(z)\right]$$

$$\Delta(t) \propto \left(\frac{t_0}{t}\right)^p$$

But when a heavy particle decays, large changes in mass are guaranteed!

Mass-drop/filtering attempts to optimize the reclustering scale for a specific decay topology, originally h→bb.

Algorithm: unwind C/A jets and require:

- 1. large mass drop $max(m_1, m_2) < \mu m_J$ and $\cdot (2 - 2)$
- 2. symmetric splitting

$$\frac{\min\left(p_{T1}^2, p_{T2}^2\right)}{m_J^2} \Delta R_{1,2}^2 > y_{cut}$$

If either requirement fails, throw out softer subjet and unwind harder subjet with same method. Continue until a splitting passes both requirements to obtain $R_{filt} = min(0.3,\Delta R/2)$ Then recluster N subjets at R_{filt} .

Pruning, inspired by filtering, explicitly vetoes soft, wide angle radiation.

Algorithm: unwind C/A jets and require:

 hard splitting or
 small angle

$$\frac{\min\left(p_{Ti}, p_{Tj}\right)}{p_{TJ}} > z_{cut}$$
$$\Delta R_{ij} < D_{cut}$$

At each step, if both checks fail, drop the softer constituent and unwind the harder. Stop when either 1 or 2 are satisfied.

All grooming methods come with parameters that have to be tuned.

Grooming can significantly reduce pileup sensitivity.

Grooming improves the jet mass resolution for signal and reduces the QCD background.

(a) dijets, 500–600 GeV

(b) $t\bar{t}$, 500–600 GeV

Pruning most aggressive at small mass, as D scales like m/p_T, whereas R_{sub} is fixed. Filtering least aggressive, as it keeps a fixed number of subjets - in this case 3.

N-subjettiness quantifies the degree to which a jet is comprised of N subjets.

Given N axes \hat{n}_k , $\tau_N = \frac{\sum_{i \in J} p_{T,i} min\left(\Delta R_{ik}\right)}{\sum_{i \in J} p_{T,i} R_0}$

 τ_N small: jet is well
 described by N or
 fewer subjets

 τ_N large: more subjets
 will likely describe jet
 better

Ratios of N-subjettiness provide more discriminating power.

The kT splitting scale can also be used to separate QCD jets from boosted resonance decay jets.

Recluster jets using k_T algorithm $\sqrt{d_{ij}} = min(p_{Ti}, p_{Tj}) \Delta R$ $\left< d_{23} \right> \approx m_W / 2$ $\left(d_{12} \right) pprox m_t / 2$ For QCD jets: $d_{34} \ll d_{23} \ll d_{12}$

To study top-tagging performance, we use a semileptonic ttbar selection.

Selection

1 lepton, 2 b-tagged jets.

Truth-matching

large-R jet within $\Delta R = 0.75$ of hadronicallydecaying top at decay vertex.

Substructure-based top-tagging can combine mass, n-subjettiness, and k_T splitting scales.

(c)

(d)

The signal-to-background is improved as compared to mass cuts alone.

Tagger	Top-tagging criterion
Substructure tagger I	$\sqrt{d_{12}} > 40 { m GeV}$
Substructure tagger II	m > 100 GeV
Substructure tagger III	$m > 100 \text{ GeV}$ and $\sqrt{d_{12}} > 40 \text{ GeV}$
Substructure tagger IV	$m > 100 \text{ GeV}$ and $\sqrt{d_{12}} > 40 \text{ GeV}$ and $\sqrt{d_{23}} > 10 \text{ GeV}$
Substructure tagger V	$m > 100 \text{ GeV}$ and $\sqrt{d_{12}} > 40 \text{ GeV}$ and $\sqrt{d_{23}} > 20 \text{ GeV}$
W' top tagger	$\sqrt{d_{12}}$ > 40 GeV and 0.4 < τ_{21} < 0.9 and τ_{32} < 0.65

Table 2: Top taggers based on substructure variables of trimmed anti- $k_t R = 1.0$ jets.

Performance is studied in MC, using Z'→ ttbar for signal and multijets for background.

Additional Material

HEPTopTagger

Use Cambridge-Aachen, R = 1.5 jets Algorithm

- unwind the jet and require max(m₁,m₂) > 0.8 m_{jet} to keep both constituents, otherwise keep higher mass
- keep unwinding all subjets as long as m > 30 GeV. Keep all subjets that haven't been discarded by requirements in step 1

cluster subjets with $R_{filt} = min(0.3, \Delta R_{jk}/2)$ calculate mass of 5 hardest constituents in each subjet

choose pairings of subjets to obtain total mass closest to $\ensuremath{m_t}$

Because of changes in q/g, α_s , and pdfs, QCD jet mass is not quite linear in p_T

Better than 25%