Self-assembly of photon transducers based on carbon
nanotubes and quantum dots, and their integration with °
CMOS electronics guided by DNA
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Single photon sensor with color resolution

From filter or dispersive based to Bio-inspired
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Single photon sensor with color resolution

~1cm
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https://www.nature.com/articles/s42005-023-01193-1
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Single photon sensor with color resolution

" nano-sensors

1) Design & assembly
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1. Carbon nanotubes
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Ballistic carbon nanotube
field-effect transistors

Ali Javey', Jing Guo’, Qian Wang', Mark Lundstrom’ & Hongjie Dai’

'Department of Chemistry, Stanford University, California 94305, USA
2School of Electrical and Computer Engineering, Purdue University,
West Lafayette, Indiana 47907, USA

A common feature of the single-walled carbon-nanotube field-
effect transistors fabricated to date has been the presence of a
Schottky barrier at the nanotube-metal junctions'~>. These
energy barriers severely limit transistor conductance in the
‘ON’ state, and reduce the current delivery capability—a key
determinant of device performance. Here we show that contact-
ing semiconducting single-walled nanotubes by palladium, a
noble metal with high work function and good wetting inter-
actions with nanotubes, greatly reduces or eliminates the barriers
for transport through the valence band of nanotubes. In situ
modification of the electrode work function by hydrogen is
carried out to shed light on the nature of the contacts. With Pd
contacts, the ‘ON’ states of semiconducting nanotubes can
behave like ohmically contacted ballistic metallic tubes, exhibit-
ing room-temperature conductance near the ballistic transport
limit of 4e’/h (refs 4-6), high current-carrying capability
(~25pA per tube), and Fabry-Perot interferences’ at low tem-
peratures. Under high voltage operation, the current saturation
appears to be set by backscattering of the charge carriers by
optical phonons. High-performance ballistic nanotube field-
effect transistors with zero or slightly negative Schottky barriers
are thus realized.

Transparent electrical contacts made to metallic single-walled
carbon nanotubes (SWNTs) have revealed them to be ballistic
conductors that exhibit two units of quantum conductance 4e/h
(Rq= hl/4e* = 6.5kQ)**. Carrier transport through the valence
and conduction bands of a high-quality semiconducting SWNT
could also be ballistic, presenting an opportunity to realize ballistic

Design & assembly of photon transducers

monotonically increases as temperature T decreases to ~50K
(Fig. 1d), below which pronounced oscillations with Fabry-Perot
type of interferences” appear in the G versus gate voltage (V) data
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Figure 1 Pd-contacted long (L = 3 p.m) and short (L = 300 nm) back-gated SWNT
devices formed on the same nanotubes on SiO,/Si. a, A scanning electron microscope
(SEM) image (left) and atomic force microscope (AFM) image (right) of a representative
device. CVD synthesis for SWNTSs and device fabrication were as described previously?>%,
except that Pd was used to contact nanotubes. The catalyst used here gave a wide
range of nanotube diameters (1.2 — 5nm)?. Ti/Au metal bonding pads were used to
connect to the Pd source (S) and drain (D) electrodes. (We note that Pd electrodes tended
to be soft and not robust against electrical probing). The devices were annealed in Ar at
225 °C for 10 min after fabrication. The thickness of SiO, gate dielectric was

tox = 500 nm, except for the devices in Fig. 4 with £ ,, = 67 nm. AFM topographic height
measurements were used to determine the diameters of SWNTSs. The electrical data
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Quantum confinement

At the size of a Q0, a semiconductor goes from the
bulk-material energy structure—with a conduction
band [CB], valance band [VB), and single band
gap—to an atom-like structure, with multiple,
discrete energy levels, the separation %

of which increases as the dot
size decreases.

1. Carbon nanotubes
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Size tunability

Solutions of different-sized
nanoparticles thus have different
colors, corresponding to the
emission wavelength,

2. Quantum dots

Design & assembly of photon transducers

Size-controlled emission

s The quantum dot
Biomedical quantum dots commonly consist
of a nanocrystalline semiconductor core [e.g.,
CdSel, surrounded by a protective shell of a
wider-bandgap semiconductor [e.g., ZnS).

CdSe absorption

Absuti;ante These multiple, discrete energy
=l levels result in separate absorption
spectra for dots of a given size, with

15— awell-defined absorption band

at the lowest-energy transition
and a distinctive series of bumps
corresponding to higher-energy
electronic transitions.
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QDs of various sizes also show sharp,
discrete emission bands, again
dependent on the particle size.



Design & assembly of photon transducers

How can we assemble such an
architecture in subwavelength area?
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DNA Nanotechnology



DNA origami
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Rothemund, Nature 2006



DNA origami

Paul Rothemund

DNA scaffold
—

DNA origami
Staple strands
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Rothemund, Nature 2006
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Endow molecules with a programming language!
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Increasing size of DNA structures
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Increasing size of DNA structures
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Automated design and experiments
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Design & assembly of photon transducers




Design & assembly of photon transducers
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Design & assembly of photon transducers

e o-Q - o
e d . . BB
PO K
coccs i lm -

Tikhomirov et al, Nature Nanotechnology 2011



Self-assembly carbon nanotube-quantum
dot sensors
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Self-assembly carbon nanotube-quantum
dot sensors
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Single photon sensor with color resolution
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1) Design & assembly 2) Scalable integration of
okfphoton transduc? \ transducers with CMOS /
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Towards ideal nanotechnology: Chemistry

Challenge: How to precisely assemble structures?

“Spray and Pray”




Current approaches to integrating top-down
and bottom-up components are not scalable

/ 1. “Spray and Pray” \ 2. “Hunt & Peck & Connect” 3. Dip Pen Deposition

!’ikhomirov et al, JOC 2008 / Maune et al, Nat. Nanotechnol. 2010 Barth et al, Optic Letters, 2009
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Field Effect Transistor (FET) Source
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“Hunt and Peck Connect”

HV |Spotl WD | HFW | Det|Pressure| Mag 20.0um
1.0kV| 20 |94 mMm|[93.73 um | ETD 1442 0 degree tilt

Tedious! Miserable! Inefficient! Unscalable!



Current approaches to integrating top-down
and bottom-up components are not scalable

/ 1. “Spray and Pray” \

!’ikhomirov et al, JOC 2008 /

/2. “Hunt & Peck & Connect” \

K Maune et al, Nat. Nanotechnol. 2010 /

3. Dip Pen Deposition

Barth et al, Optic Letters, 2009



Single photon sensor with color resolution
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Si substrate with
native oxide layer

0, plasma activation

20bp oligonucleotide
solution depostion

Epoxide ring opening
reaction with GPTMS
layer and wash-off
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Single photon sensor with color resolution

1) CNTs are a pain (aggregation, polydispersity). Look for alternative 1D
carriers (Te wires?).
2) Continue development of precision placement.
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