Photonic Sensing, Processing, and Computing

S. J. Ben Yoo Distinguished Professor

University of California, Davis, California 95616

Joint Faculty

Lawrence Berkeley National Laboratory

Email: sbyoo@ucdavis.edu ; home page: http://sierra.ece.ucdavis.edu

1/30/2025

Project organization chart (from the proposal)

			MSRC Leadership Council									Nanoscale Hybrids Award					Management boa			1		
	Other award PI's										PI: M. Garcia-Sciveres						Activity leads & Subaward PIs					
		R&D activity	De De	Demonstrator (3.1) Conce (3.2) (3.2)		epts eory .2)	&	& Modelin (3.3)		,	Low-dimension nanomaterials (3.4)		al	Self-assembly (3.5)		CMOS design and processing (3.6)		Photonic processing (3.7)				
	Activi lead(M. Garcia- Sciveres		F. Le	onard		A. Papadopo		ulou	A. Raja		ja	R.	R. Ruiz		A. Papadopoulou		В.	Yoo		
	Scientit		5	A	II	The Phot Edge co	Theory Photonics Edge computing		Theory Modeling Instrumentation		tion	Nanotechnology Nar Microfab. & Charact.		Nanote Microfab	notechnology rofab. & Charact.		Modeling Instrumentation Microfab. & Charact.		Photonics Edge computing			
															22-425					11111		
	E	dge comput	ting Nanotechnology				Photonics			Theory			Modeling		Instrumentation		Microfab. & Chara					
expertise oosal	F. Wa A. Non Z. Ya A. Jav		g ka y	LBNL	T. Kuykendall A. Raja R. Ruiz M-Y. Im A. Javey		LBNL	E. A	F. Wang A. Javey		Sandia	F. Leona	rd	LBNL		Nonaka . Yao adopoulou	LBNL	A. P N	apadopoulou M. Garcia- Sciveres A. Javey	LBNL	T. Kuykendall A. Raja R. Ruiz M-Y. Im A. Javey	
for this prop	UC Davis	B. Yoo		UCB	G. Tikho	nnirov Davis		E	3. Yoo						2		UT Arlington		Y. Mei	UT Arlington	Y. Mei	
Key				Sandia	F. Leo	nard				_										UCB	G. Tikhomirov	

Figure 16: Project organization chart. The management structure is shown in green while the interconnection between activities through scientific disciplines is shown in blue.

NEXT GENERATION ______ NETWORKING & COMPUTING _____ SYSTEMS LABORATORY _____

1/30/2025

NanoHybrid MEERCAT DoE MSRC Kickoff

Example of Photonic Sensing, Processing, and Computing at Nanoscale

From W. Chen, et al, *iScience*, 2022

Photonic Sensing, Processing, and Computing with 10⁵ : 1 Feature Extraction

Understanding, 2016

1/30/2025

Medathati, et al., *Computer Vision and Image*

NanoHybrid MEERCAT DoE MSRC Kickoff

Imaging with Intelligence Sensor Fusion integrated with Neuromorphic Computing

OODA loop (observe, orient, decide, act)

DARPA Micro-Brain

DARPA Hi-MEMS Hybrid Insect Micro-Electro-Mechanical Systems

Image courtesy of BuiltIn

NEXT GENERATION ________ NETWORKING & COMPUTING _____ SYSTEMS LABORATORY _______

1/30/2025

Intelligent imaging microsystems with 3D EPIC AI/Neuromorphic Computing

ELECTRICAL AND COMPUTER

Real Space & Fourier Space Computational ImagingFourier SpaceReal Space

NEXT GENERATION ______ NETWORKING & COMPUTING _____ SYSTEMS LABORATORY _____

1/30/2025

Intelligent imaging microsystems with 3D EPIC Al/Neuromorphic Computing

Project activities and milestones (from the proposal)

ACTIVITIES	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	5	3a,4,5	3a,5	6	5a, 7,8,9	10,11,12	10,11,12	test		test						
Demonstrator SPD	3a,4		5a,10,11,12		10,11,12				Itera	tion or TMD	nanowire ve	ersion	test			
Demonstrator SLD				***************	nano	-hybrid proc	ess develop	ment	1,2	remaini	ng fabricatio	on steps	test			
IC design & fab					integra	ted circuit d	lesign & prod	duction	test iteration				possible te		est	
Theorem		Photon co	upling R&D				******			*************				**************		
Theory	Combir	ned sensing	and process	ing R&D	Combin	ed sensing	and process	ing R&D	NEGF f	iormalism / c	ollective inte	eractions	NEGF f	ormalism /	collective inte	eractions
Modeling		device SP	ICE models			device SP	ICE models									
wodeling	e	lectron-phon	on interactio	ns	time-c	lep. single p	hoton intera	ctions		noise sir	nultation		include light delivery			
Low-D materials	٦	TMD dvice ch	naracterizatio	on	Te nar	owire SPD	trials / + TMI	D work	М	odifications	or processi	ng	Materal combinations			
TMD		Ohmic heatir	ng conversio	n	shrink	and paralle	elze. TEM an	alysis		explore var	iants in text		SPD version		test	
DNA self-assembly	Placemen	t of decorate	d CNTs / qu	antum rods	DNA C	rigami plac	ement w/orie	entation		growth of in	terconnects		combination of steps			
Electro-optic modulators		EOM theo	ry modeling		TMD EOM	prototyping		Test	TMD EOM	prototyping		Test	EOM hybrid combinations			
photonic devices	Wav	e guides /co	upling/metal	enses	5	SPD trials ar	nd refinemen	nt		photonic	crystals		nano-hybrid integration			
		Ye	ar 1			Ye	ar 2			Ye	ar 3		Year 4			
MILESTONES	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
M1: Processing + Sensing	theory			♦a	♦ b											
M2: V1 CMOS results																
M4: SPD completed																
M5: Submit integrated circuit																
M6: V2 CMOS wafers available																
M7: TMD local heating validated																

Figure 15: Timetable of activities and milestones. Yellow indicates R&D, orange fabrication, blue testing.

1/30/2025

NanoHybrid MEERCAT DoE MSRC Kickoff

Possible Activities for Photonic Sensing, Processing, and Computing ?

- Nanoscale Materials
- Hyperspectral Sensing
- Nonlinear Photonics
- Nanoscale Photonic-Electronic Devices
- 3D Heterogeneous Integration
- New paradigms on sensing, processing, and edge computing with photonics
- Modeling, Theory, ...

1/30/2025

Imagine Attojoule Nanophotonics-Nanoelectronics

- ~ 1 fJ/b interconnect exploiting quantum impedance conversion by close integration with electronics with < 1 fF capacitance.
- At 10 fJ/b energy efficiency ~19 dB (80x) link loss budget and ~30% wall plug efficiency of the light source.
- ~80x fanout on low-loss waveguides at 10 fJ/b, nearly independent of the communication distance.
- ~8000x fanout possible

S. J. Ben Yoo, 2017 IEEE Photonics Society Summer Topical M. Nazirzadeh, M. Shamsabardeh, and S. J. Ben Yoo, CLEO 2018 paper ATh3Q.2.

electrically pumped quantum-dot photoniccrystal nanocavity laser," Nature Photonics, vol. 5, p. 297, 04/24/online 2011.

David A. B. Miller, "Attojoule Optoelectronics for Low-**Energy Information Processing and Communications,**" J. Lightwave Technol. 35, 346-396 (2017).

1/30/2025

NanoHybrid MEERCAT DoE MSRC **Kickoff**

ND COMPUTER

Nanolasers--- photonic crystal version

• Prior Art and Our New QD-PC Laser Design

1/30/2025

NanoHybrid MEERCAT DoE MSRC Kickoff

UCDAVIS ELECTRICAL AND COMPUTER ENGINEERING

Bio-Inspired Optoelectronic Neuron Design (modified Izhikevich-model)

NEXT GENERATION _________

1/30/2025

NanoHybrid MEERCAT DoE MSRC Kickoff

Prototype Optoelectronic Neuron Demonstration with

Excitatory-Inhibitory Inputs

NEXT GENERATION ________

1/30/2025

NanoHybrid MEERCAT DoE MSRC Kickoff

11

RICAL AND COMPUTER

ENGINEEPING

Optoelectronic Neurons: towards Nano-Scale Attojoule Optoelectronic Neurons

- M. Nazirzadeh, M. Shamsabardeh, and S. J. Ben Yoo, "Energy-Efficient and High-Throughput Nanophotonic Neuromorphic Computing," in CLEO 2018, paper Th3Q.2.
- Yun-Jhu Lee, Mehmet Berkay On, Xian Xiao, Roberto Proietti, and S. J. Ben Yoo, "Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model," Opt. Express 30, 19360-19389 (2022)

NEXT GENERATION _______ NETWORKING & COMPUTING _____ SYSTEMS LABORATORY ______

1/30/2025

NanoHybrid MEERCAT DoE MSRC Kickoff

Neuromorphic Computing GF45SPCLO Dies for 3D EPIC

UCDAVIS 13 ELECTRICAL AND COMPUTER ENGINEERING

NEXT GENERATION _________ NETWORKING & COMPUTING ______ SYSTEMS LABORATORY ______

Heterogeneous Integration on Silicon Examples at UC Davis

S. J. Ben Yoo, University of California, Davis; sbyoo@ucdavis.edu

CTRICAL AND COMPUTER

ENGINEERING

NEXT GENERATION __________

DARPA

DARPALUMOS RFI

300 mm Custom Wafer Run with Custom Device Layers & Post Fabrication & Integration at UC Davis

NEXT GENERATION

1/30/2025

NanoHybrid MEERCAT DoE MSRC Kickoff

UCDAVIS ELECTRICAL AND COMPUTER ENGINEERING

µTransfer Printing at UC Davis

Deposited ~5nm Au sputter coater, blanket W dep with FIB GIS, ~1 micron W dep FIB GIS, 1.0nA ion beam @30KV, 52 degrees tilt, CCS BtoT (app: GaAs, 3 micron)

1/30/2025

tungsten deposition to protect from the destructive sputtering of the beam

NanoHybrid MEERCAT DoE MSRC Kickoff

UC Davis' Through Silicon Photonic Vias (Optical TSVs)

SYSTEMS LABORATORY

CAL AND COMPUTER ENGINEERING

3D Electronic-Photonic Integrated Circuits (3D EPICs)

- □ Optical TSVs on Monolithic CMOS Photonic Dies (GF45SPCLO).
- Wafer Reconstitution (including substrate removal, alignment keys, planarization) and Optical TSV fab & integration preserving CMOS (to be shown in Annual Review)
- □ Hybrid Wafer Bonding in 3D and Integration with E-O Interposer completes 3D EPICs
- □ New gen. memories with photonic-electronic interconnects in pursuit with S. Yu of GTech

1/30/2025

NanoHybrid MEERCAT DoE MSRC Kickoff

3D Scaling of Nanoscale Photonic-Electronic-Integrated-Circuits

S. J. B. Yoo, 2017 IEEE Photonics Society Summer Topical

Yu Zhang, Kuanping Shang, S. J. B. Yoo. Opex 2017

Y. Zhang, Y. Ling, Y. Zhang, K. Shang and S. J. B. Yoo, JSTQE, vol. 24, no. 6, pp. 1-10, Nov.-Dec. 2018,

Yun-Jhu Lee, Mehmet Berkay On, Xian Xiao, Roberto Proietti, and S. J. Ben Yoo, "Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model," Opt. Express 30, 19360-19389 (2022)

19

1/30/2025

NEXT GENERATION

NETWORKING & COMPUTI

SYSTEMS LABORATORY

NanoHybrid MEERCAT DoE MSRC Kickoff