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Introduction

Animation from business insider Particle colliders

https://www.businessinsider.com.au/what-happens-inside-a-particle-collider-2015-4
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https://www.calcmaps.com/map-radius/

The Large Hadron Collider (LHC) is a 3 mile radius accelerator 
facility, accelerating particles near the speed of light

CERN
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The Challenge
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Only about 1 in 10 billion collisions at 
the LHC produce a Higgs Boson
Comparison: 
● Odds of being struck by lightning: 1 in 

15 thousand
● Odds of being killed by a vending 

machine: 1 in 112 million
● Odds of winning the Powerball: 1 in 

300 million
Source: 
https://stacker.com/art-culture/odds-5
0-random-events-happening-you
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The trick: Bunches of 
protons cross each other 
every 25 ns, resulting in 
about 600 Million effective 
collisions per second



The Challenge
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Source: CMS-NOTE-2022-008

FuturePresent

Future upgrades of the LHC 
experiment will aim to 
increase the likelihood of 
collisions happening, 
exceeding the current 
computing budget
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Physics Theory Physics 
Simulation

Detector 
Simulator Simulated data

Nature Detector 
interaction Measured data

We can only compare our physics predictions with 
experiments through the use of simulations. Detector 
simulation takes more than 40% of the computing resources



Generative models
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Generative models are a class of algorithms trained to 
transform easy-to-sample noise into data

Source: 
https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/


Diffusion Generative Models
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https://openai.com/dall-e-2

“Scientists from BIDMAP  
working on Science and 
Machine Learning”



Diffusion Generative Models

14Source: 
https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
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Generated by CaloScorePhysics Simulation

First Diffusion model in 
High Energy Physics 
named CaloScore.
Up to 50k Detector 
Components simulated

● V. Mikuni and B. Nachman Phys. Rev. D 106, 092009
● V. Mikuni and B. Nachman 2024 JINST 19 P02001



Diffusion Generative Models for Detector Simulation
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Additional model 
trained to learn the 
energy sum

Improve energy 
conservation by training 2 
conditional diffusion 
models: One on normalized 
pixel responses and one to 
determine the total energy 
deposition

Energy deposition 
inferred from sum of 
pixels



Diffusion Generative Models for Detector Simulation
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Physics Simulator CaloScore

105-106 times 
faster than full 
physics 
simulation!
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What we measure What we want



Unfolding
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Source: CMS-PAS-TOP-20-006

Traditional methods for unfolding use histograms
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Not everything is naturally represented 
by a histogram!
● Some observables are not simply 

counts

2024
CMS-SMP-22-015



OmniFold

22Source: Andreassen et al. PRL 124, 
182001 (2020)

2-step iterative process
▰ Step 1: Reweight simulations to 

look like data
▰ Step 2: Convert learned weights 

into functions of particle level 
objects



2-step iterative process
▰ Step 1: Reweight simulations to 

look like data
▰ Step 2: Convert learned weights 

into functions of particle level 
objects

▰ Use classifiers to learn the 
reweighting functions!

OmniFold

23Source: Andreassen et al. PRL 124, 
182001 (2020)
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Histograms are not used during the measurement, 
only to display the results

H1 Collaboration: PLB 844 (2023) 138101

As the energy scale increases, so does the 
likelihood of scattering a valence quark 
from the proton, resulting in more positive 
jet charges!



In practice
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We can quantify this statement by 
looking at the average jet charge versus 
energy scale
No histograms needed!

Source: Andreassen et al. PRL 124, 
182001 (2020)
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https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter

https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter
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Q: How do you find a 
needle in a haystack? 
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Q: How do you find a 
needle in a haystack?
A: You use a magnet! 
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Theory was right!

Constrain the new 
theory

Plausible Theory: 
SUSY, WIMPs, LLPs

Verification: Confirm 
the theory using data



Common New Physics Searches Workflow
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Plausible Theory: 
SUSY, WIMPs, LLPs Search for anomalies!

Interpretation

Constrain many 
theories



Anomaly detection
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▰ Autoencoders learns to compress and 
decompress data 

▰ Anomalies are often poorly decompressed, 
yielding a high reconstruction error

R1(x) R2(x)

▰ Train multiple  decorrelated autoencoders 



Anomaly detection
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▰ Region of interest: Both 
autoencoders agree the 
observation is anomalous

▰ Other regions: Used to estimate 
the fake rate

AnomalousCommon

An
om

al
ou

s
Co

m
m

on

Region of 
interest

Background in the region of 
interest = R1*R3/R2

R1

R2 R3



Anomaly detection performance
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No anomaly In the absence of new 
physics, no excess is 
observed

Anomalies identified as an 
excess translated as a 
Significance or 
signal-to-noise ratio

V. Mikuni, B. Nachman, and D. Shih. Physical Review D 105.5 (2022): 055006.

False positive rate

Other colors: 
datasets with 
0.1% anomalies 
and 99.9% 
background
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Foundational Models
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● Foundational models are everywhere now
● In essence, these models are trained on large datasets and can be 

used for multiple tasks
● How does a foundational model for science looks like?
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Data Model Learning
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Improving Generative Models
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Simultaneously improving generative models, unfolding, and 
anomaly detection in 9 different benchmarks!



Improving Unfolding
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Simultaneously improving generative models, unfolding, and 
anomaly detection in 9 different benchmarks!

Training time reduced by a factor 2!



Improving Anomaly Detection
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Simultaneously improving generative models, unfolding, and 
anomaly detection in 9 different benchmarks!

Improved sensitivity to new physics: 
requires 4 times less data to find the signal!



Improving Everything!
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Simultaneously improving generative models, unfolding, 
and anomaly detection in 9 different benchmarks!

More benchmarks in
V. Mikuni, B. Nachman, 
arXiv:2404.16091 
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AI is revolutionizing the way to do science 
● At the LHC, large amounts of data 

motivate the use of AI to accelerate 
discovery

● Beyond the LHC, AI enables 
interdisciplinary research

● Interdisciplinary models could bring 
new discoveries: Foundational models 
for Science! 
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THANKS!
Any questions?
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Fast Detector Simulation
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Improving Simulations even Further
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Diffusion generative models in latent space for calorimeter simulation. 
Thandikire Madula, PhD Student at UCL: submission accepted at 
NeurIPS 2023 ML4PS Workshop

Calorimeter detector simulation with continuous normalizing flows. 
Chirag Furia, CS Undergraduate Student at Brown University: submission 
accepted at NeurIPS 2023 ML4PS Workshop

Faster diffusion generative models for jet generation. 
Yash Melkani, Physics Undergraduate Student at UC 
Berkeley
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Diffusion Generative Models
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Score matching/denoising/diffusion
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Denoise diffusion models are the newest state-of-the-art generative 
models for image generation. 
Pros:
▰ Stable training: convex loss function
▰ Scalability: Network complexity is more sensitive to the 

architecture than the dimensionality
▰ Access to data likelihood after training: similar to NFs, but 

overall normalization is not required during training
Cons:
▰ Slow sampling: Possibly 1000s of model evaluations to 

generate realistic images



Score-matching
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▰ The common choice for 𝜆(t) is 𝛔(t)2 resulting in the loss function 

▰ Another important result is when 𝜆(t) is g(t)2 that represents an 

upper bound of the data likelihood

▰ Allowing the maximum-likelihood training of diffusion models!

https://arxiv.org/abs/2101.09258


Generation
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▰ Generation of new samples is done by 
solving the reverse SDE

▰ Langevin dynamics is used to draw 
samples from p(x) using only the score 
function

▰ High fidelity samples require small time 
steps, 

▰ For Calorimeter generation, O(100) 
evaluations are enough to produce precise 
results



Particle generation
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JetNet30 and JetNet150 Datasets
▰ Datasets with up to 30 or 150 particles
▰ Multiple jet classes including: Top quarks, W/Z bosons, Light quarks, Gluons

https://zenodo.org/record/6975118
https://zenodo.org/record/6975117


Particle generation
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Progressive distillation is used to reduce the overall number of function evaluations
● Single-shot generation with almost no performance degradation

Mikuni, V,  Nachman, B., and M. 
Pettee  Phys. Rev. D 108, 036025



Results
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Multiple physics inspire metrics 
used to evaluate the 
performance of the generative 
model, achieving SOTA in many 
categories
● Single-shot model is still 

performant and 1000 
times faster than the full 
simulation

Mikuni, V,  Nachman, B., and M. 
Pettee  Phys. Rev. D 108, 036025
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Reco level

Generator level

MC

MCData

Data



Omnifold
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Reco level

Generator level

MC

MCData

Data Step 1:
● Train a classifier to separate data from MC events
● Reweight reco level MC with weights:

W(reco) = 
pData(reco)/pMC(reco) 

Iteration 1



Omnifold
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Reco level

Generator level

MC

MCData

Data Step 2:
● Pull weights from step 1 to generator level events
● Train a classifier to separate initial MC at gen level 

from reweighted MC events
● Define a new simulation with weights that are a 

proper function of gen level kinematics

MC reweighted

W(gen) = pweighted 

MC(gen)/pMC(gen) 

Iteration 1



Omnifold
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Reco level

Generator level

MC

MCData

Data Start again from step 1 using the new simulation after 
pushing the weights from step 2
● Guaranteed convergence  to the maximum 

likelihood estimate of the generator-level 
distribution when number of iterations go to 
infinite

● In practice, less than 10 iterations are enough to 
achieve convergence

Iteration 1



Omnifold

64

Reco level

Generator level

MC

MCData

Data Start again from step 1 using the new simulation after 
pushing the weights from step 2
● Guaranteed convergence  to the maximum 

likelihood estimate of the generator-level 
distribution when number of iterations goes to 
infinite

● In practice, less than 10 iterations are enough to 
achieve convergence

Iteration N
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Almost all measurements at the LHC 
are reported as histograms
● Natural representation for counting 

problems
● Well-understood properties



The Challenge
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Not everything is naturally represented 
by a histogram!
● Moments of distributions: theory is 

only sensitive to moments of 
observables

D. Krohn, M. D. Schwartz, T. Lin, and W. J. 
Waalewijn Phys. Rev. Lett. 110, 212001



Jet angularities
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Use jet observables to study different 
properties of QCD physics:
▰ Infrared and collinear (IRC) safe 

𝛌1
a, a = [0,0.5,1] and unsafe pTD 

angularities
▰ Charge dependent observables: 

Qj and Nc
▰ Study the evolution of the 

observables with energy scale 
Q2 = -q2 

q

● zi: longitudinal momentum fraction
● qi: charge
● Ri distance from jet axis in (eta,phi)



Experimental setup
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Using 228 pb-1  of data collected 
by the H1 Experiment during 
2006 and 2007 at 318 GeV 
center-of-mass energy 

Phase space definition:
▰ 0.2 < y < 0.7
▰ Q2 > 150 GeV2

▰ Jet pT > 10 GeV
▰ -1 < 𝜂lab < 2.5

Jets are clustered with kt 
algorithm with R=1.0

Reconstructed hadrons using 
combined detector 
information: energy flow 
algorithm

27.5 GeV e+-  (k) 920 GeV p (P)

Q2 = - q2

 y = Pq / pk

 P: incoming proton 4-vector
 k: incoming electron 4-vector
 q=k-k’ : 4-momentum transfer



Large Scale Computing
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▰ 2800 neural networks were trained to determine the final measurement
▰ One of the first uses of the Perlmutter supercomputer for science!
▰ Training with 128 GPUs simultaneously while evaluation requires a single 

GPU



Extracting particle information
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▰ Particle information is extracted using a Point cloud 
transformer* model

▰ Model takes kinematic properties of particles and use the 
distance between particles in 𝜂-𝜑 to learn the relationship 
between particles

▰ Built in symmetries: permutation invariance
▰ Consider up to 30 particles per jet

* V. Mikuni and F. Canelli 2021 Mach. Learn.: Sci. Technol. 2 035027



Closure test
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Verify the model 
consistency: start from the 
Rapgap simulation and 
unfold the response based 
on the Djangoh simulation

Total of 6 iterations used 
to derive the main results

All distributions are unfolded simultaneously without binning 
and without jet substructure information used at reco level!



Multi-differential
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Worse general 
agreement between 
data and simulations

Standard deviation of all distributions also unfolded for free
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Anomaly detection

74Kasieczka, G., Mastandrea, R., Mikuni, V., Nachman, B., Pettee, 
M., & Shih, D. (2022). arXiv preprint arXiv:2209.06225.

▰ The set of features used to 
search for anomalies can also 
have a big impact on the 
algorithm performance, as 
statements regarding ps(x) 
and pb(x) are not invariant 
under change of coordinates

Gaussian

CDF

tanh



Online compatibility
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Slides from Maurizio Pierini

▰ More than 99% of events are 
rejected due to bandwidth 
restrictions

▰ Given the algorithm’s simplicity, 
it can also be deployed directly 
using modern hardware 
implementations such as 
FPGAs

▰ Possibility to identify 
anomalous events  and store 
the information for further 
analysis

https://atrium.in2p3.fr/nuxeo/nxfile/default/2c445c94-34a9-4bce-97c7-0847bb139245/blobholder:0/PIERINI_Deep%20Learning%20with%20FPGA.pdf


Anomaly detection at trigger level
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▰ Potential to recover new physics events lost as 
trigger level

▰ Ongoing data challenge to test ideas
▰ CMS shows that AD triggers are feasible: 

CMS-DP-2023-079 

Govorkova, Ekaterina, et al. Scientific Data 9.1 (2022): 118.
Govorkova, Ekaterina, et al.  Nature Machine Intelligence 
4.2 (2022): 154-161.


