
LocalDB

Hideyuki Oide (KEK)

1

LocalDB missions

2

• Supporting QC for { module, bare module, PCB, OB loaded cell } (so far)

• Store components info and previous QC results conducted by other sites (e.g. bare module IV)

• Issuing Module serial number on assembly

• Storage of atomic YARR scans

• Brokerage of tests: centralized mqat-analysis of each mqt-supported tests (incl. non-elec tests)

• Book-keeping of FE config revisions

• [new] Administration of QC flags

• Consistent QC progress state administration → components stage coherency

• E-summary and subsequent Stage sign-off → push QC results and FE configs to PDB.

• Browsing visualization and UI/UX for fast and intuitive operation of QC processes

• Robustness: Functions not disturbed by tests pushed by other tools to PDB or PDB changes…

Main software dependencies

3

• mongodb: storage of all relevant information for conducing QC

• itkdb: portal interface to sync data with ITkPD

• module-qc-analysis-tools (mqat): QC tests analysis

• module-qc-database-tools (mqdbt): various APIs.

‣ In particular, support mqt results pushing to LocalDB, backend administration of FE configs,
referring to bare module IV, etc.

‣ Used in both server and client sides.

• module-qc-nonelec-gui (mqneg): Client platform interface for non-elec tests.

‣ The web service itself is not dependent on mqneg.

• YARR/localdb scripts: Supporting scan uploading [to-be-migrated to mqdbt]

• Flask+jinja2: python-based web engine constructing the web user interface

Key Concepts

4

• LocalDB service codes are written so that it does not need to know the peculiarity of components
or QC tests.

‣ For example, a bare localdb service just installed doesn’t have component breakdown
structure nor stage lists.

‣ Similarly, localdb does not classify elec/non-elec tests, except for limited special cases like
visual inspection, handling E-summary or fetching bare module IV results. This helps
minimizing the maintenance.

‣ All the rest details are injected from dependency packages or from data downloaded from
ITkPD.

‣ Major tasks of localdb is storage of FE configs, buffering & brokerage of QC test results, stage/
test state administration, sync of the information, visualization and guide workflow to
opeartors.

LocalDB MongoDB collections

5

• 2 databases, referred to as localdb and localdbtools

‣ localdb: for storage of components or main test records, configs, QC status, etc.

‣ localdbtools: infrastructural informations (component type, stage definitions, messages, etc.)

localdb> show collections
childParentRelation
comments
component
componentTestRun
config
fe_config_revision
fe_configs
fs.chunks
fs.files
institution
pd.institution
QC.module.status
QC.result
QC.testRAW
QC.testRuns_pdb_ldb_map
testRun
user

localdbtools> show collections
componentType
message
QC.analysisProcess
QC.checkout
QC.module.types
QC.stages
QC.tests
viewer.query
viewer.tag.categories
viewer.tag.docs
viewer.user

Components

6

• Supporting assembly breakdown structure of
components.

• Implemented in two mongodb collections

‣ localdb.component

• Store information of each individual
component

‣ locladb.childParentRelation

• Linkage between parents and children

OB Loaded Cell

Module OB Bare Cell

BareModule PCB Carrier(*)

Sensor Tile FE Chip

Module SN synthesis

7

• Pre-requisite: all sub-components must be gathered in the same site (on PDB).

• Permitted to assemble only the BM—PCB types permutation that are pre-defined in the SN specification doc.

• LocalDB offers a dedicated algorithm to synthesize Module SN according to the definition rule.

20 U PG M2 3610052

20 U PG B4 3323010 20 U PG PQ 4610052

PCB Vendor Code

Vendor-internal PCB ID

Inherited

FE Chip Version

Inherited

Pre-defined Look-up Table

“XX” “YY”Bare Module SN PCB SN

Module SN

PCB design versionHybridization Vendor

Module SN synthesis

8

• Pre-requisite: all sub-components must be gathered in the same site (on PDB).

• Permitted to assemble only the BM—PCB types permutation that are pre-defined in the SN specification doc.

• LocalDB offers a dedicated algorithm to synthesize Module SN according to the definition rule.

Stages

9

• QC process has multiple waterflow stages.

• General integrity policy: store only a single (representative) test
record on a stage.

• We have tests associated either to the top-level component or
to sub-components.

‣ ADC calibration on FE

‣ IV scan on Module

• Stage coherency: FE-level tests and Module-level tests should
be registered on the identical stage.

• These rules constrain subcomponents stage structure:

‣ intrinsic (standalone) stages, AND

‣ super-component stages

Module

BareModule PCB

Sensor Tile FE Chip

Stages and Tests

10

Module Stages/Tests

FE Stages/Tests

Downloading Tests

11

• Downloading past test records on PDB to LocalDB is made automatically when pulling a component.

‣ This process conducted by RecursiveComponentSynchronizer will take certain time when stage is progressed.

• Tests on PDB should be either:

‣ mqt-mqat-localdb-compliant: on top of the TestRun format, additional attachment files referred to as RAW and
attachment_pack.zip are present. TestRun’s RunNumber (string) is identical to localdb’s test instance
OjbectId.

• RAW is effectively identical to mqt measurement output for electrical tests. Re-analysis is supported.

• attachment_pack.zip aggregates all mqat output files (e.g. png files)

‣ plain: only TestRun format. RunNumber convention is undefined.

• Typically WAFERPROBING data and non-electrical data uploaded by other tools like WebApp.

• We try to develop LocalDB to not crash by the presence of such data. Features are limited.

Recording Tests to LocalDB

12

• Multiple data flow paths exist according to natural data paths.

‣ (1) mqt-mqdbt CLI: standard for electrical QC, except for MHT/TUN/PFA.

‣ (2) YARR scans: a dedicated scan-uploading scripts (i.e. the “-W” option)

‣ (3) nonelec-gui: non-elec but format-standardized input needed:
visual inspection, wirebond pull test, etc.

‣ (4) LocalDB browser: small info inputs: mass measurement, thermal cycling, parylene coating, etc.

• In all tests, mqat runs in the LocalDB server → generates the PDB-compliant TestRun format.

‣ Some tests might not have so serious “analysis”, but just reformatting the input plus attaching the QC
pass/fail flag is a generalized “analysis” operation.

module-qc-tools workflow

13

Client (aka DAQ machine) LocalDB Server

mqt adc-calibration

mqt-output

mqdbt upload-measurement  
--path path/to/output  
--host localdb.host --port 5000

mqat analysis-ADC-CALIBRATIION

mqt-output

mqat-output

localdb.testRAW

localdb.QC.result

link

fs.files

mongodb

nonelec-gui workflow

14

Client (aka photo-taking machine) LocalDB Server

Module Photos

User’s inspection

mqat analysis-VISUAL-INSPECTION

mqt-output

mqat-output

localdb.testRAW

localdb.QC.result
link

fs.filesfull/tiled images

inspection data

mongodb

Browser input workflow

15

Client (aka DAQ machine) LocalDB Server

mqat analysis-MASS-MEASUREMENT

mqt-output

mqat-output

localdb.testRAW

localdb.QC.result
link

input data

mongodb

YARR Scan workflow (very different!!)

16

Client (aka DAQ machine) LocalDB Server

scanConsole -W

scan outputs

dbAccessor -S /path/to/output
(wrapped in scanConsole)

localdb.fe_config_revision
localdb.componentTestRun
localdb.testRun
localdb.fs.files

mongodb

• Historically, this part is one of the oldest code of the LocalDB, even before ITkPD started to use.

• Still works quite well for storing ~all YARR scan outputs, but should be migrated to mqdbt.

FE Config

17

• Revision history of FE config is reserved in LocalDB.

• Revision is a series divided by stage and [warm,cold,LP]

• The root config is downloaded from ITkPD when the
stage increments.

• mqdbt has an API to download latest or specific revision
config.

MHT/TUN/PFA registration

18

• MHT/TUN/PFA needs a set of scan results,
but each scan type may have multiple
scans within a stage.

• A dedicated interface in the browser to
select scans and then submit.

‣ Select a FE, choose MHT, submit
→ by default, apply same set of scans to
all FEs together.

E-Summary

19

• E-summary is an aggregation place of gathering links to all FE-level electrical tests.

• Registration done via LocalDB, by selecting a representative test for each FE/test.

• Some high-level summary numbers, e.g. total bad pixels.

• A typical electrical-QC-only stage comprises:

‣ Module-level: IV-measure, E-Summary

‣ FE-level: ADC-Calibration, Analog Readback, SLDO, …

Result Visualization

20

Result Visualization

21

Sign-off & Uploading

22

• With Sign-off, the stage in localdb increments.

‣ At this point, by default uploading the previous stage tests to ITkPD will be made.

‣ For each test, the following informations are uploaded.

• TestRun (the nominal ITkPD Test format)

• RAW result

• attachment_pack.zip (plots or any other auxiliary files that mqat outputs).

• N.B. mostly the binary data resides in EOS disk space, while ITkPD attachment records its metadata.

• FE config (only for the TUNING test)

• ITkPD test run’s “RunNumber” is identical to the localdb’s TestRun ObjectId, and the ObjectId of the
TestRun on ITkPD is stored in LocalDB as the “receipt” of successful uploading.

• When needed, user can jump to an alternative stage.

Recycling analysis

23

• Given mqat analysis evolves over time, tests conducted in the back log could be renewed using latest
deployed mqat.

• “Recycle Analysis” button is equipped in each TestRun page.

• For E-summary, a bulk recycling of all registered tests is supported.

A new devel in this workshop: QC Customization

24

• Enabling skipping of specific tests or entire stage.

• Reflection in the test list or in the stage.

• Now working: reflection in E-Summary pass flag.

• Mixture of Quad/Triplet — unsupported so far.

Disabled
Disabled

Sign-off & Uploading

25

• With Sign-off, the stage in localdb increments.

‣ At this point, by default uploading the previous stage tests to ITkPD will be made.

‣ For each test, the following informations are uploaded.

• TestRun (the nominal ITkPD Test format)

• RAW result

• attachment_pack.zip (plots or any other auxiliary files that mqat outputs).

• N.B. mostly the binary data resides in EOS disk space, while ITkPD attachment records its metadata.

• FE config (only for the TUNING test)

• ITkPD test run’s “RunNumber” is identical to the localdb’s TestRun ObjectId, and the ObjectId of the
TestRun on ITkPD is stored in LocalDB as the “receipt” of successful uploading.

• When needed, user can jump to an alternative stage.

Resources

26

• http://atlas-itk-pixel-localdb.docs.cern.ch/

• https://gitlab.cern.ch/YARR/localdb-tools

• https://mattermost.web.cern.ch/itkpixel/channels/local-database

http://atlas-itk-pixel-localdb.docs.cern.ch/
https://gitlab.cern.ch/YARR/localdb-tools
https://mattermost.web.cern.ch/itkpixel/channels/local-database

