Measuring the strong coupling constant

Henoch Wong UC Berkeley 290e seminar 6 April 2016

Demystifying this plot!

Figure 9.3: Summary of measurements of α_s as a function of the energy scale Q. The respective degree of QCD perturbation theory used in the extraction of α_s is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading order; res. NNLO: NNLO matched with resummed next-to-leading logs; N³LO: next-to-NNLO).

A BIT OF THEORY

QCD Lagrangian

QCD has <u>one</u> coupling parameter (g_s)

$$\mathcal{L} = \sum_{q} ar{\psi}_{q,a} (i\gamma^{\mu}\partial_{\mu}\delta_{ab} - g_{s}\gamma^{\mu}t^{C}_{ab}\mathcal{A}^{C}_{\mu} - m_{q}\delta_{ab})\psi_{q,b} - rac{1}{4}F^{A}_{\mu
u}F^{A\,\mu
u},$$
 $F^{A}_{\mu
u} = \partial_{\mu}\mathcal{A}^{A}_{
u} - \partial_{
u}\mathcal{A}^{A}_{\mu} - g_{s}f_{ABC}\mathcal{A}^{B}_{\mu}\mathcal{A}^{C}_{
u}$

$$\alpha_s = \frac{g_s^2}{4\pi}$$

$$\begin{array}{ccc} a, \mu & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ c, \rho & & & \\ \end{array} \begin{array}{c} b, \nu & & & \\ & & \\ & & & \\ \end{array} \begin{array}{c} -ig_s^2 \left[\, f^{abe} f^{cde} \left(g^{\mu\rho} g^{\nu\sigma} - g^{\mu\sigma} g^{\nu\rho} \right) \right. \\ & & & \\ & & & \\ & & & \\ + f^{ade} f^{bce} \left(g^{\mu\nu} g^{\rho\sigma} - g^{\mu\rho} g^{\nu\sigma} \right) \right] \end{array}$$

Screening

Renormalization of QCD

• Consider the one-loop correction to QCD:

An Introduction to QFT: Chapter 16 - Peskin & Schroeder

 Loops are divergent and requires the introduction of an arbitrary UV cut-off (Λ) to regulate

$$\alpha_{\rm s}(Q^2) = \frac{\alpha_{\rm s}(Q_0^2)}{1 + b_0 \alpha_{\rm s}(Q_0^2) \ln \frac{Q^2}{Q_0^2}} = \frac{1}{b_0 \ln \frac{Q^2}{\Lambda^2}}$$

6

Renormalization Group Equation

Note: The renormalization scale are denoted $\Lambda_{cut-off}$, μ_R , M_{UV} interchangeably in the literature

- The renormalization scale (μ) is an unphysical scale to regulate the theory
- If "A" is an observable quantity, it should not depend on the arbitrary choice of μ
- Observable "A" will satisfy the renormalization group equation:

$$\begin{bmatrix} \mu^2 \frac{\partial}{\partial \mu^2} + \mu^2 \frac{\partial \alpha_s}{\partial \mu^2} \frac{\partial}{\partial \alpha_s} \end{bmatrix} A \left(\frac{Q^2}{\mu^2}, \alpha_s(\mu^2) \right) = 0$$
$$\alpha_s = \alpha_s(\mu^2) \qquad \beta(\alpha_s) = \mu^2 \frac{\partial \alpha_s}{\partial \mu^2}$$

β function

- A quick recap of the 2 main points:
 - 1. Physical observables should not depend on the unphysical scale μ
 - 2. Dependence on the energy scale μ is absorbed into the coupling constant

 The dependence of the coupling constant with the energy scale is called "running" and described by the β function:

$$eta(lpha_s) = \mu^2 rac{\partial lpha_s}{\partial \mu^2}$$

SU(N) gauge theory

<u>The 1-loop contributions to β function</u>

• Quark loop vacuum polarization diagram:

• Gluon loop diagrams:

An Introduction to QFT: Chapter 16 - Peskin & Schroeder

β function in QCD

The Nobel Prize in Physics 2004

P

• For SU(N=3) gauge theory:

David J. Gross

H. David Politzer Frank Wilczek

 $\mu_R^2 \frac{\partial \alpha_s}{\partial \mu_R^2} = \beta(\alpha_s) = -\left[\frac{33 - 2n_f}{12\pi}\right] \alpha_s^2$

- There are 2 main features to the β function in QCD:
 - 1. Depends on n_f, the number of active fermion fields
 - 2. Since $n_f \le 6$, $\beta < 0$ and the running coupling constant tends to zero at large momenta (asymptotically free)

Running of α_s

Figure 9.2: Summary of determinations of $\alpha_s(M_Z^2)$ from the six sub-fields discussed in the text. The yellow (light shaded) bands and dashed lines indicate the pre-average values of each sub-field. The dotted line and grey (dark shaded) band represent the final world average value of $\alpha_s(M_Z^2)$.

EXPERIMENTS

ALEPH detector, CERN

OPAL detector, CERN

e⁺e⁻ annhilation

JADE detector, DESY

R-ratio

The R-ratio is defined as

$$R \equiv \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Since common factors cancel in numerator/denominator, to the lowest order:

$$R(Q^2) = N_C \sum_f q_f^2$$

 $N_c = 3$ for SU(3)

q_f is quark electric charge

Q is center-of-mass energy₄

R-ratio (1st order correction)

When including 1st order correction:

$$R(Q^2) = N_C \sum_f q_f^2 \left(1 + \frac{\alpha_s(Q^2)}{\pi} \right)$$

R-ratio (2nd order correction)

When including 2nd order correction:

$$R(Q^2) = N_C \sum_f q_f^2 \left(1 + \frac{\alpha_s(Q^2)}{\pi} + C_2 \left(\frac{\alpha_s(Q^2)}{\pi} \right)^2 \right)$$

 $C_2 = 1.9857 - 0.1152n_f$ (from P₁DG)

Extracting α_s from R-ratio

- 1. Collide e⁺e⁻
- 2. Measure rate of events with hadron and lepton as final states
- 3. Take ratio of rates to obtain R
- 4. Extract $\alpha_s!$

Mission Accomplished?

Extracting α_s from R-ratio

- 1. Collide e⁺e⁻
- 2. Measure rate of events with hadron and lepton as final states
- 3. Take ratio of rates to obtain R
- 4. Extract $\alpha_s!$

Jet Rates & Event Shapes

 Instead focus analysis with #jet ≥ 3, leading contribution is sensitive to α_s

- Jet Rates:
 - $-e^+e^- \rightarrow$ multi (3,4,5,6) jets
- Event Shape:
 - Jet topology (momenta flow, angular distributions) affected by gluon emission

00000

000

Eur. Phys. J. C 35, 457–486 (2004) Digital Object Identifier (DOI) 10.1140/epjc/s2004-01891-4

Studies of QCD at $\rm e^+e^-$ centre-of-mass energies between 91 and 209 GeV

The ALEPH Collaboration

Jet Rates

Durham clustering algorithm

 $y_{ij} = rac{2\min(E_i^2,E_j^2)(1-\cos heta_{ij})}{E_{
m vis}^2}$

 Jet multiplicity dependence on jetalgorithm clustering threshold y_{cut}

Fig. 7. Measured *n*-jet fractions for n = 1, 2, 3, 4, 5 and $n \ge 6$ and the predictions of Monte Carlo models, at a centre-of-mass energy of 206 GeV 20

Eur. Phys. J. C 35, 457–486 (2004) Digital Object Identifier (DOI) 10.1140/epjc/s2004-01891-4

THE EUROPEAN Physical Journal C

Studies of QCD at $\rm e^+e^-$ centre-of-mass energies between 91 and 209 GeV

The ALEPH Collaboration

- Event Shape
 - Define Thrust: $T = \max_{\mathbf{n}_T} \left(\frac{\sum_i |\mathbf{p}_i \cdot \mathbf{n}_T|}{\sum_i |\mathbf{p}_i|} \right)$ $p_i: \text{Momentum of particle}$ $n_T: \text{Thrust axis}$
 - By definition, n_T points in direction that is collinear with the maximum flow of momenta of the event
 - T=1 for back-to-back jets
 - T=0.5 for perfectly spherical distribution of momenta

Collinear jets

PETRA collider, DESY e⁺e⁻ collider @ 14-44 GeV

LEP collider, CERN e⁺e⁻ collider @ 91-206 GeV

ZEUS detector, DESY

H1 detector, DESY

Deep Inelastic Scattering

Deep Inelastic Scattering (0th order)

Lepton-Proton collider

<u>Kinematics:</u>

$$Q^2 = -q^2$$
 $s = (k+p)^2$ $x_{Bj} = rac{Q^2}{2p \cdot q}$ $y = rac{p \cdot q}{k \cdot p}$

Cross Section:

$$\frac{d\sigma}{dydx} = \frac{2\pi\alpha_{em}^2 s}{Q^4} \left(1 + (1 - y^2)F_2(x) - F_2(x)\right) = \sum_{\substack{l \text{Parton distribution} \\ \text{function (PDF)}}} xq_l^2 f_l^{(p)}(x)$$

- $f_i(x)$ independent of Q^2 , invariant to scaling
- Partons are point-like (Bjorken scaling)

k'

xp

proto

Deep Inelastic Scattering (1st order)

Radiative corrections

To first order in the coupling:

need to consider the emission of one real gluon and a virtual one

- PDF is no longer scale invariant (not point-like free quarks)
- Evolution of PDF given by DGLAP equation:

$$\mu^2 \frac{\partial f(x,\mu^2)}{\partial \mu^2} = \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P(z) f\left(\frac{x}{z},\mu^2\right)$$

Altarelli, Parisi; Gribov-Lipatov; Dokshitzer '77

F₂ with pertubative QCD

• Including higher orders in pQCD, the structure function becomes:

$$F_2(x, \mathbf{Q^2}) = x \sum_{n=0}^{\infty} \frac{\alpha_s^n(\mu_R^2)}{(2\pi)^n} \sum_{i=q,g} \int_x^1 \frac{dz}{z} C_{2,i}^{(n)}(z, \mathbf{Q^2}, \mu_R^2, \mu_F^2) f_{i/p}\left(\frac{x}{z}, \mu_F^2\right) \frac{\text{QCD review}}{\text{PDG}}$$

- 1. $F_2(x,Q^2)$ has Q^2 dependence because of QCD radiative correction
- 2. Strong coupling constant α_s gives size of correction
- 3. $C_2^{(n)}_{,i}$ coefficient is calculable from Feynman diagrams

F_2 dependence on Q^2

DIS analysis done to NLO

Extraction of α_s from low x curves

http://www.mit.edu/~hasell/DKH_zeus.html

Jets cross-section in DIS

• Production of jets is a more direct measurement of α_s

Figure 1: Deep-inelastic *ep* scattering at different orders in α_s : (a) Born contribution $O(\alpha_{em}^2)$, (b) example of boson-gluon fusion $O(\alpha_{em}^2\alpha_s)$, (c) example of QCD Compton scattering $O(\alpha_{em}^2\alpha_s)$ and (d) example of a trijet process $O(\alpha_{em}^2\alpha_s^2)$.

Measurement of α_s at HERA

18

HERA collider, DESY e⁻/e⁺ @ 27.5 GeV Proton @ 920 GeV

ATLAS detector, CERN

CMS detector, CERN

Hadron-Hadron Collisions

Probing QCD with Hadron Collisions

Cross Section

$$\sigma(h_1h_2 \to W + X) = \sum_{n=0}^{\infty} \alpha_s^n(\mu_R^2) \sum_{i,j} \int dx_1 dx_2 f_{i/h_1}(x_1, \mu_F^2) f_{j/h_2}(x_2, \mu_F^2) \times \hat{\sigma}_{ij \to W + X}^{(n)}(x_1 x_2 s, \mu_R^2, \mu_F^2)$$

Higgs production from gluon fusion

Cross Section Measurements

Good agreement with NLO QCD predictions!

Standar	d Model Total Produ	ction Cross S	ection Measur	rements Status: March 2015	∫£ dt [fb ⁻¹]	Reference
pp total	$\sigma=95.35\pm0.38\pm1.3$ mb (data) COMPETE RRpt2u 2002 (theory)		Ŷ	¢	8×10 ⁻⁸	Nucl. Phys. B, 486-548 (2014)
Jets R=0.4	$\sigma = 563.9 \pm 1.5 \pm 55.4 - 51.4 \ {\rm nb} ({\rm data}) \\ {\rm NLOJet}_{++,} \ {\rm CT10} ({\rm theory})$		0.1 < pT < 2 TeV		4.5	arXiv:1410.8857 [hep-ex]
Dijets R=0.4 y <3.0, y*<3.0	$\sigma = 86.87 \pm 0.26 + 7.56 - 7.2 \ \mathrm{rb} \ \mathrm{(data)} \\ \mathrm{NLOJet}_{++} \ \mathrm{CT10} \ \mathrm{(theory)}$	0.3 <	m _{jj} < 5 TeV		4.5	JHEP 05, 059 (2014)
W total	$\sigma = 94.51 \pm 0.194 \pm 3.726 \ \mathrm{nb} \ \mathrm{(data)} \\ \mathrm{FEWZ+HERAPDF1.5} \ \mathrm{NNLO} \ \mathrm{(theory)}$		\$	4	0.035	PRD 85, 072004 (2012)
Z	$\sigma = 27.94 \pm 0.178 \pm 1.096 \ \mathrm{nb} \ \mathrm{(data)} \\ \mathrm{FEWZ+HERAPDF1.5} \ \mathrm{NNLO} \ \mathrm{(theory)}$		\$	4	0.035	PRD 85, 072004 (2012)
+Ŧ	or = 182.9 ± 3.1 ± 6.4 pb (data) top++ NNLO+NNLL (theory)	¢		D D	4.6	Eur. Phys. J. C 74: 3109 (2014)
total	$\sigma = 242.4 \pm 1.7 \pm 10.2 \text{ pb (data)}$ top++ NNLO+NNLL (theory)	4		4	20.3	Eur. Phys. J. C 74: 3109 (2014)
to show	σ = 68.0 ± 2.0 ± 8.0 pb (data) NLO+NLL (theory)	0		0	4.6	PRD 90, 112006 (2014)
total	$\sigma = 82.6 \pm 1.2 \pm 12.0 \text{ pb (data)}$ NLO+NLL (below)	4			20.3	ATLAS-CONF-2014-007
WW+WZ	σ = 68.0 ± 7.0 ± 19.0 pb (data) MC@NLO (theory)	•	LHC pp $\sqrt{s} = 7$ TeV		4.6	JHEP 01, 049 (2015)
14/14/	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb (data)}$ MCFM (theory)	b	Cheerend		4.6	PRD 87, 112001 (2013)
total	$\sigma = 71.4 \pm 1.2 + 5.5 - 4.9 \text{ pb (data)}$ MCFM (beary)	4	 Observed stat 	i 🗖	20.3	ATLAS-CONF-2014-033
10/4	$\sigma = 16.8 \pm 2.9 \pm 3.9 \text{ pb} (\text{data})$	Ó	stat+syst		2.0	PLB 716, 142-159 (2012)
total	$\sigma = 27.2 \pm 2.8 \pm 5.4 \text{ pb (data)}$				20.3	ATLAS-CONF-2013-100
H ggF	$\sigma = 23.9 + 3.9 - 3.5 pb (data)$ LHC-HXSWG (theory)	4	LHC pp $\sqrt{s} = 8$ TeV		20.3	ATLAS-CONF-2015-007
14/7	$\sigma = 19.0 + 1.4 - 1.3 \pm 1.0 \text{ pb (data)}$	ò	Theory		4.6	EPJC 72, 2173 (2012)
total	$\sigma = 20.3 + 0.8 - 0.7 + 1.4 - 1.3 \text{ pb (data)}$	Å	Observed	<u>ă</u>	13.0	ATLAS-CONF-2013-021
77	$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4 \text{ pb} (data)$	6	stat stat+syst		4.6	JHEP 03, 128 (2013)
total	$\sigma = 7.1 + 0.5 - 0.4 \pm 0.4 \text{ pb} (data)$	Ā			20.3	ATLAS-CONF-2013-020
	$\sigma = 2.43 \pm 0.6 - 0.55 \text{ pb (data)}$ LHC-HXSWG (theory)		Preliminary		20.3	ATLAS-CONF-2015-007
ttw	σ = 300.0 + 120.0 - 100.0 + 70.0 - 40.0 fb (data) MCPM (theory)	Run 1	$\sqrt{s} = 7,8$ TeV		20.3	ATLAS-CONF-2014-038
tīZ	σ = 150.0 + 55.0 - 50.0 ± 21.0 fb (data) HELAC-NLO (theory)				20.3	ATLAS-CONF-2014-038
	$10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}$	$1 \ 10^1 \ 10^2 \ 10^3$	$10^4 \ 10^5 \ 10^6 \ 10^1$	¹ 0.5 1 1.5 2		
	10 10 10 10 10	- 10 10 10	10 10 10 10			
			σ [pb]	observed/the	orv	

Jet production in Hadron Collisions

Jet Production in pp and $\overline{p}p$ Interactions

- $\sigma(\text{Jets})$ is sensitive to α_s at lowest order
- Dependence on energy measured by LHC from ~10 to 10³ GeV

33

LHC, CERN pp⁻ collision @ 7, 8 and now 13 TeV

τ DECAYS

Why τ?

- The only lepton that can decay hadronically
- Can probe QCD at energy scales of $M_{\tau} = 1.8 \text{ GeV}$

 $R_{\tau} \equiv \frac{\Gamma[\tau^- \to \text{hadrons}\,\nu_{\tau}]}{\Gamma[\tau^- \to e^- \overline{\nu}_e \nu_{\tau}]} = 3 \left| V_{ud} \right|^2$

• QCD perturbation would cause a correction to the hadronic decay width

Correction identical to the R-ratio in e⁺e⁻

Naïve lowest order

$$R_{\tau} \propto \int_{0}^{M_{\tau}^{2}} \frac{ds}{M_{\tau}^{2}} \left(1 - \frac{s}{M_{\tau}^{2}}\right) \left(1 + \frac{2s}{M_{\tau}^{2}}\right) \left[1 + \alpha_{s}(s) + (1.9857 - 0.1152n_{f})\alpha_{s}(s)^{2} + \dots\right]$$

Integrated over allowed range of invariant masses from decay of $\boldsymbol{\tau}$

Order α_s^4 QCD Corrections to Z and τ Decays

P.A. Baikov

Institute of Nuclear Physics, Moscow State University, Moscow 119899, Russia

K. G. Chetyrkin^{*} and J. H. Kühn Institut für Theoretische Teilchenphysik, Universität Karlsruhe, D-76128 Karlsruhe, Germany (Received 11 January 2008; published 3 July 2008)

 $R = 1 + a_s + (1.9857 - 0.1152n_f)a_s^2$ + (-6.63694 - 1.20013n_f - 0.00518n_f^2)a_s^3 + (-156.61 + 18.77n_f - 0.7974n_f^2 + 0.0215n_f^3)a_s^4.

Using τ hadronic decay width from LEP:

$$\alpha_s(M_{\tau}) = 0.332 \pm 0.005_{\rm exp} \pm 0.015_{\rm th}.$$
 M_t=1.8 GeV

PDG world average

 $\alpha_{\rm s}({\rm M_z}) = 0.1181 \pm 0.0013$

M_z=91 GeV

Summary

- Running of coupling constants from introduction of scale to regulate theory
- QCD is asymptotically free because of gluon self-interaction
- Kinks in curve from active n_f

Experiments

- e⁺e⁻ (Multiple Jets & Event Shape)
- DIS
- Hadron Collision
- τ decay

Figure 9.3: Summary of measurements of α_s as a function of the energy scale Q. The respective degree of QCD perturbation theory used in the extraction of α_s is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading order; res. NNLO: NNLO matched with resummed next-to-leading logs; N³LO: next-to-NNLO).

Resources

- <u>http://pdg.lbl.gov/2015/reviews/rpp2015-rev-</u> <u>standard-model.pdf</u> (PDG 2015 QCD review)
- <u>https://www2.physics.ox.ac.uk/sites/default/</u> <u>files/QCDLectures.pdf</u> (Giulia Zanderighi lecture)
- <u>http://www.nikhef.nl/~h24/qcdcourse/</u> <u>section-6.pdf</u>