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Non-Dispersive	Imaging	Spectroscopy	!	
•  high	resolving	power	at	diagnosKcally	rich	6	keV	(Fe	K-shell)	
•  spectroscopy of extended	sources	
• 	unity	QE	and	photon	counKng	
	

Power of X-ray Microcalorimeters 

TESs	
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Chandra	GraKngs	
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•  Intro	to	our	X-ray	microcalorimeters	&	sensors	
•  Two	technical	challenges	
•  Reduced	heat	capacity	devices	

Outline	

note:	∆EFWHM		=	2.355	σ		
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Thermal	detec2on	of	individual	X-ray		
photons	

– High	spectral	resolu2on	

– High	intrinsic	quantum	efficiency	

Signal:	

Decay:	

X-ray	Microcalorimeter	Concept 		

Energy	resoluKon	is	limited	by	thermodynamics:	

	 	∆E	∝ T	C(T)0.5	

Operate	at	cryogenic	temperatures	(~50	mK)	

	

Non-dispersive	spectrometer	

Ctot	=	total	heat	capacity	

G	=	thermal	conductance	

∝

∝
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Semiconductor	Thermometer	
(Doped	Ge	or	Si)	
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SuperconducKng	TransiKon	Edge	
Sensor	(TES)	Thermometer	

Narrow	transiKon	
Tc	~	100mK	

Large	Arrays,	Best	E/∆E	

Several	sensor	approaches:		

Approach	used	for:	
XQC	Sounding	Rocket	
Astro-H	Sog	X-ray	Spectrometer	(SXS)	

Also,	magneKc	calorimeters.	



•  Ion-implanted	Si		
(or	Neutron	TransmutaKon	Doped	Ge)	

•  High	resistance,		
read	out	with	JFET	
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∆EFWHM	~		4	eV	(R~1500	at	6	keV)	

arrays	of	~36	pixels	
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Mo/Au	bilayer	TES	

140	µm	

Interdigitated	metal	
stripes	for	noise	
miKgaKon	

Bias	
lead	

Membrane	

Mo	(45	nm)	/	Au	(225	nm);		
Tc	=	0.1	K	

microcalorimeter	array	
(0.1	–12	keV,	∆EFWHM~2	eV)	

• 		Si	removed	beneath	pixels	to	leave	TES	
sikng	on	SiN	membrane	
• 	overhanging	absorbers	are	several	microns	
thick	(made	of	Au	or	Au/Bi),	to	provide	high	
QE	and	appropriate	C;		
even	thicker	absorbers	used	for	high-energy	
x-ray	or	gamma-ray	detectors	



Recent	TES	X-ray	Microcalorimeter	Array	Development:	
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Energy	ResoluKon	and	Device	OpKmizaKon	

∆E	∝ T	(C/α)	0.5	
	

•  ∆E	is	independent	of	E	in	small	temperature	excursion	around	Tc	
•  OpKmize	detector	design	for	best	resoluKon	with	a	certain	Emax		

•  make	heat	capacity	as	small	as	possible	and	α as	high	as	possible	
without	saturaKng	detector,	taking	into	account	noise	scaling	

∆E	∝ (T	Emax)	0.5	 	 	Emax	∝	C	T/α



10	

Energy	ResoluKon	and	Device	OpKmizaKon	

∆E	∝ T	(C/α)	0.5	
	

•  ∆E	is	independent	of	E	in	small	temperature	excursion	around	Tc	
•  OpKmize	detector	design	for	best	resoluKon	with	a	certain	Emax		

•  make	heat	capacity	as	small	as	possible	and	α as	high	as	possible	
without	saturaKng	detector,	taking	into	account	noise	scaling	

∆E	∝ (T	Emax)	0.5	 	 	Emax	∝	C	T/α

M2 depends on α  
high α (>100) à high M2 

€ 

ΔE = 4kbT
2 C
α

2 1+ 2β( ) 1+ M 2( )
β scales 
with α 

à	For	our	TESs	

•  Use	matched	“opKmal”	filter	for	standard	event	processing	for	best	∆E	
•  alternaKve	analysis	approaches	are	in	development	for		

non-linear	devices	and	high	count-rate	applicaKons	
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Energy	Threshold	(example,	using	∆EFWHM	~4	eV	silicon	thermistor	SXS	array)	
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High-frequency	noise	can	have	large	
effect	on	trigger	threshold,	but	lisle	
impact	on	energy	resoluKon.		
	
Low	instrument	collecKng	area	at	low	energy	so	
not	a	driving	requirement;	we	trigger	as	low	as	
possible	to	reduce	background	and	avoid	
contaminaKon/pile-up.		
	

5σ	thresh=25	(33	eV)	

5σ	thresh=63	(84	eV)	
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 typical pixel
 ringing pixel (driven by cryocoolers)
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Technical	Challenges	(1)	
ThermalizaKon	



Insufficient	thermalizaKon	can	lead	to	degraded	resoluKon	and/
or	distorted	line	shape.	
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•  want	rapid	energy	downconversion	following	photon	absorpKon,	where	device	
thermalizaKon	is	complete	prior	to	sensor	response	(measuring	a	single	∆T)	

•  If	thermalizaKon	is	not	rapid	or	complete	or	there	are	other	energy	loss	
mechanisms,	signal	size	can	depend	on	absorpKon	posiKon,	degrading	resoluKon	
and	distorKng	line	shape		
o  silicon	thermistor	devices:	use	separate	absorber	to	avoid	absorbing	in	Si,	

controlled/reproducible	absorber	asachment	process	
o  TES	devices:	use	separate	absorber;	Au	layer	in	absorbers	for	thermalizaKon,	

electroplated	Bi	for	stopping	power	
o  solid	substrate	TES	devices	(no	membrane	isolaKon):	make	absorber	asachment	

stems	w/	small	area	to	minimize	athermal	phonon	loss	to	substrate	



Example	of	Surface	Effects	(energy	loss)	
		

•  Small	exponenKal	tail	related	to	photons	absorbed	near	surface	of	HgTe	absorbers	
(Astro-H	SXS	detectors)		

	

~2%	at	270	eV	 <0.1%	at	5410	eV	

•  	Tail	measured	from	0.3	keV	–	8	keV.	FracKon	of	counts	in	tail	drops	with	energy	in	
manner	consistent	with	decreasing	fracKon	of	photons	absorbed	near	surface.	

•  Possible	trapping	states	due	to	altered	band	structure	near	surface	(first	tens	of	A)?	
14	
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Technical	Challenges	(2)	
Heatsinking	
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Heatsinking	
	

1)  EffecKve	Tb	change	caused		
	 	by	TES	bias	power	

	
2)  pixel-to-pixel	crosstalk	

–	need	good	heatsinking	to		
accommodate	high	x-ray	fluxes	

	

thick	Au	layer	
connect	to	heat	sink	with	Au	bonds	
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Improve	heatsinking:	Coat	sidewalls	of	wells	with	thick	Cu	
	

• 	steep	angle	deposiKon	from	back	
• 		rotaKng	jig	to	deposit	on	all	four	sidewalls	

• 	remove	DRIE	passivant	before	deposiKon	
to	ensure	good	Si/Cu	conductance	

40%	coaKng	of	sidewalls	on	this	wafer	(80%	currently	possible)	
3.5	micron	thick	

300	µm
	

	

130	µm
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Reduced	Heat	Capacity	Devices	(1)	
X-ray	TES	Microcalorimeters	
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Typical	low-C	response	in	so@	X-ray	band:	

low	heat-capacity	“bare”	TES	

140	µm	
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	∆E	∝ T	C0.5	

	

	Heat	capacity	C	~	0.1	pJ/K		(x10	smaller	than	
standard	design)	
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Typical	low-C	response	in	so@	X-ray	band:	

low	heat-capacity	“bare”	TES	

140	µm	
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	∆E	∝ T	C0.5	

	

	Heat	capacity	C	~	0.1	pJ/K		(x10	smaller	than	
standard	design)	
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New	opera2ng	regime	for	X-ray	TESs	–	so@	satura2on:	

miniaturized	pixel:		35	µm	TES,	57	µm	x	57	µm	x	4.5	µm	absorber		

small	pixels	

low	heat-capacity	“bare”	TES	

140	µm	
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New	opera2ng	regime	for	X-ray	TESs	–	so@	satura2on:	

low-energy	pixel	(bare	TES)	
	from	hybrid	array	

R-I-T	Surface	

highly	current	dependent	transiKon	
	
enabled	good	energy	resoluKon	over	extended	

energy	range,	and	∆EFWHM	=	0.72	eV	at	1.5	keV		 22	
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Reduced	Heat	Capacity	Devices	(2)	
OpKcal	TES	Microcalorimeters	
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OpKcal	TES	Microcalorimeters		
Stanford	(Cabrera	et	al.),	NIST/Boulder	(Nam,	Lita	et	al.)	
	

Example	of	NIST/Boulder	opKcal	devices:	
•  W-TES	with	Al	leads	(also	explored	Hf-TES)	
•  device	Tc	tuned	to	~150mK	
•  25	x	25	µm2	

•  DetecKng	photons	of	0.6	eV	(2	µm)	–	3	eV	(400	nm)	
•  push	to	get	high	QE,	low	Kming	jiser,	faster	decay	Kmes	

B.	Calkins,	A.	Lita,	A.	Fox,	and	S.	W.	Nam.	APL	(2011).			
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OpKcal	TES	Microcalorimeters	–	with	advanced	pulse	processing	

D.J.	Fixsen,	S.H.	Moseley,	T.	Gerrits,	A.E.	Lita,	S.W.	Nam.	J.	Low	Temp.	Phys.	(2014)	

linear
	algor

ithm	

non-linear	algorithm	

retaining	energy	resolving	power	beyond	linear	range		

Number	of	3	eV	photons	

Co
un

ts
	p
er
	b
in
	

typical	response	to	405	nm	photon	
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Lower	energy	opKmizaKon	thoughts:	
smaller	C:		
how:	smaller	device	volume,	different	materials	
cauKons:	ogen	means	smaller	collecKng	area;	in	case	of	smaller	
TESs,	proximity	from	leads	can	raise	Tc	and	change	transiKon	shape	
	
lower	operaKng	T:	
how:	can	tune	sensor	operaKng	temperature	–	bilayer	thicknesses	
(Mo/Au,	Mo/Cu)	or	crystal	structure	(W)	
cauKons:	only	gain	like	sqrt(T),	requires	lower	heatsink	temperature	
	
increase	α:	
how:	not	straigh{orward,	change	normal	metal	features	on	TESs,	…	
cauKons:	we	observe	excess	noise	(M2	term)	with	high	α
	
advanced	pulse	processing	techniques:	retain	device	performance	
into	saturated	regime	
cauKons:	calibraKon	needs	increase	significantly	


