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Where is radiation threatening ?



TTRTTN B, TYPFTOUEERS. - ol . a2l 41 Al T TR .



Damage from passengers collisions inside a Quantas Airbus A330 in
October 2008. All potential causes for the failure of the plane’s flight
control system have been found unlikely, except for a radiation-induced

error (SEU)




Alpha radiation activity of some common materials
utilized in microelectronic packages

U (S.Kumar et al., Rev.Adv.Mater.Sci. 34(2013) 185-202)
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Nuclear power
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How?



Single Event Effects

Traceable to the interaction of a single particle
Can lead to temporary or permanent failure

Total lonising Dose
This is the ‘classical’ problem for CMOS technologies Dlsplacement Damage

Only relevant for circuits using diodes or parasitic

bipolar devices in CMOS




Single Event Upset (SEU)

’/ﬂ Particle
strike

NMOS

D. Munteanu, and J.-L. Autran, “Modeling and simulation of single-event effects in digital
devices and ICs”, IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 1854-1878, Aug. 2008
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Single Event Functional Interrupt (SEFI)

A fatal exception BE has occurred at 8828:C8811E36

BBB1BE36. The current application will be termninated.

in UXD UMH(B1)

» Press any key to terminate the current application.

Press any key to continue _

Press CTRL+ALT+DEL again to restart your computer. You will
lose any unsaved information in all applications.

+
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Single Event Burnout (SEB) of a power MOSFET

Single Event Latchup (SEL) of a high voltage driver

for MEMS (vaporized bond wires)

M.O’Bryan et al., “Current Single Event Effects and Radiation Damage

NSREC Radiation Effects

”
’

Results for Candidate Spacecraft Electronics

Data Workshop 2002
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Single Event Effects

Traceable to the interaction of a single particle
Can lead to temporary or permanent failure

Total lonising Dose

This is the ‘classical’ problem for CMOS technologies

Displacement Damage

Only relevant for circuits using diodes or parasitic
bipolar devices in CMOS
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TID levels in different applications

1rad 10rad 100rad 1krad 10krad 100k 100Mrad 1Grad

HL-LHC
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Braconidae (Insect), 180krad

Deinococcus Radiodurans
(Bacteria), 1.5Mrad

can be killed in 20minutes in our X-ray facility
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The basis of TID effects in CMOS structures

(4) RADIATION-INDUCED
INTERFACE TRAPS
WITHIN Si BANDGAP

Si
11.1 eV
(3) DEEP HOLE
TRAPPING
NEAR Si/SiO,
INTERFACE
GATE
(2)HOPPING TRANSPORT
OF HOLES THROUGH
(1) ELECTRON/HOLE PAIRS :—h?scggl-'ﬁ?_ gTATES
GENERATED BY IONIZING 2
RADIATION

T.R.Oldham and F.B.McLean, “Total lonizing Dose Effects in MOS Oxides and
Devices”, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 3, JUNE 2003
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Deep hole trapping occurs at an oxygen vacancy site close to the interface

(a) : e (ﬁ < planar, positive

Strained Si-Si bond Rt (b)
(oxygen vacancy) ~ L ,\,‘ Relaxed E"1 center
Hole trapping
(radiation < tetrahedral, neutral
generated)
Reversibill
eversibility Annealing
(tunneling from .
Reverse o .o R substrate) the e tunnels to the neutral Si,
annealing Cycle forming a dipole. The e can
(tunneling back
to substrate) O@D tunnel back and forth, and the
| - © dipole can trap an additional e,

Bond reformation

_ 1 4t | Charge compensation.  making the whole complex
(true annealing)

" and unpaired spin .
@@) elimination negative

T.R.Oldham and F.B.McLean, “Total lonizing Dose Effects in MOS Oxides and
Devices”, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 3, JUNE 2003
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Interface traps require the migration of hydrogen to the interface.
Their formation is known as a “two-stage” process.

D.M.Fleetwood, “Effects of hydrogen transport and reactions
on microelectronics radiation response and reliability
Microelectronics Reliability 42 (2002) 523-541

17



The reaction of H* with the ‘passivated’ dangling bond at the interface
leaves a charged Si atom that can exchange e” with the silicon

+ + (b)

Si-H + H* = D* + H» W
(c)

W

S.N.Rashkeev et al., “Defect generation by hydrogen at the Si-SiO2 interface”, Phys.Rev.Lett., Vol.87,2001
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Interface states are amphoteric: they can trap either electrons
or holes depending on the Fermi energy at the interface

1. Flatband 2. NMOS (inversion) - PMOS (inversion)

Forbidden gap

In NMOS, negative In PMOS, positive
charge is trapped charge Is trapped




Result on the threshold voltage of MOS structures

n-channel p-channel

Oxide 3 -

charges

Interface
states

N-channel

Before
irradiation

P-channel

Before
irradiation
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Charge buildup in the oxides and at their interface influences the electrical
parameters of transistors (for the gate oxide) and of parasitic structures

unavoidable in CMOS

Leakage between adjacent n-diffusions

Metal 1

L .

n+ diffusion | STI ., . . . . , .  n+ diffusion

p- substrate

Source-Drain leakage in NMOS

Parasitic
MOS

P
P?Irasitif = :\L
channe il
oxide
Trapfed Ne—_ J
positive r /7 Bird’s beak

charge
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NMOS

pre-metal oxide

/

polysilicon gate

Source-Drain leakage in NMOS is due to positive charge trapped in the bulk of the STI oxide
PMOS
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inversion if positive charge dominates

p-bulk

further accumulation

n-bulk



Radiation-hard processes

low volume (yield)

very high cost

far from state-of-the-art
dependence on single source
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Episode IV:
A New Hope

24



The gate oxide thickness scales in each technology node (up to a point)

Scaling -- Traditional Enabler of Moore’s Law*
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The accumulation of TID-inducd ‘defects’ in an oxide
decreases with the thickness of the oxide

AVge/10° RAD (Si) (VOLT/RADISH)

If the gate oxide is sufficiently thin, problems arise in the parasitic structures
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N.S. Saks et al., IEEE TNS, Dec. 1984 and Dec. 1986

where the oxide thickness does not follow any scaling rule
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Source-Drain leakage is eliminated by the Enclosed Layout Transistor (ELT)...

G
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The equation used for the design of ASICs used in today’s LHC experiments and

manufactured in an (affordable) commercial-grade 0.25um process is:

Thin gate oxide + HBD techniques = Radiation tolerance
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ELT was not such an original idea in the ‘90s...

344 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-12, NO. 4, AUGUST 1977

C2L: A New High-Speed High-Density Bulk
CMOS Technology

ANDREW G. F. DINGWALL, MEMBER, IEEE, AND ROGER E. STRICKER

GUARD BAND

Abstract—C2L, or closed COS/MOS logic, is a new structural ap-
proach to high-speed bulk-silicon COS/MOS logic. C2L is a self-aligned
silicon-gate CMOS Technology where the gate completely surrounds the
drain. The use of such geometry maximizes the transconductance to
capacitance ratio for devices and thus allows high on-chip speed. The
CDP 1802 single-chip 8-bit microprocessor, as well as several memory
and I/O circuits announced recently by the RCA Solid State Division,
are fabricated in this new technology.

Generally, C2L devices show an improvement in packing density by a
factor of 3 over standard CMOS and operate at frequencies approxi-
mately 4 times faster than standard CMOS. The fabrication sequence
for C*L devices requires 6 photomasks (one less than standard CMOS).

NN

INTRODUCTION

CA Corporation recently introduced C2L, or closed COS/

MOS logic, devices into its commercial CMOS logic family.
This new structural form of CMOS devices offers several
advantageous design features. C2L is a self-aligned silicon-
gate technology which can approach the maximum speed
performance possible for bulk-silicon CMOS devices. It
has high packing density, and a simple processing sequence
with fewer photomasking and processing steps.  These
have contributed to excellent yield performance. Since the
entire C?L chip surface is heavily doped either p+ or nt, po-
tential reliability problems due to unwanted surface inversion
effects are eliminated. Further, the closed structures circum- ,
vent the need to guardband individual MOS transistors, thus ~ Fig. 1. Microphotograph of CDP 1802 C?L 8-bit microprocessor
achieving low parasitic leakage over a 3~15V operation range. (178 X 234 mil?).
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Enclosed
layout!

GATE
CONTACT

DRAIN ]

CONTACT

DRAIN
DRAIN AREA
HETAL

(b)
Fig. 2. Comparison of standard Al-gate CMOS and C*L transistors.
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No precise model

Lack of commercial library
Size constraints

Larger area and capacitance

30



Is the systematic use of ELT transistors really needed?

Is the answer to this question dependent on the technology node and process?

31



The time evolution of the two types of defects in the STl oxide is different:
interface states activation is requires H* migration, which is a slow process

E field lines
olysilicon gate
A CA I I )+ +
&' '\ :Q+
STl - ST
Oxide trapped charge / \ N Interface states

Depletion region

I V'Y
D
Main transistor

Lateral parasitic transistor




The typical result for a ‘fast’ irradiation (high dose rate):

Interface states compensate
Oxide trapped charge dominates
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The leakage current is the sum of different mechanisms involving:
» the creation/trapping of charge (by radiation)
 its passivation/de-trapping (by thermal excitation)

These phenomena are Dose Rate and Temperature dependent!

 irradiation

irradiation **

thermal energy

¥ thermal energy
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The properties of the defects (hole traps, interface states) have

been studied in these two publications:

* F.Faccio, G.Cervelli, “Radiation-induced edge effects in deep submicron CMQOS transistors”,
IEEE Trans. Nucl. Science, Vol.52, No.6, December 2005, pp.2413-2420

» F.Faccio et al., “Total ionizing dose effects in shallow trench isolation oxides”,
Microelectronics Reliability 48 (2008) 1000-1007
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The leakage increase is visible in complex logic ASICs developed in this technology

Logic core current consumption in the GBTx at room T: green curve (courtesy P.Moreira and GBT Team)
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The leakage increase depends on processing details beyond (our) control,

that can be changed without warning
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10°
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Recap in 250-130nm

Technology downscaling has endowed transistors with TID-tolerant gate oxides.

Leakage currents in parasitic structures (NMOS source-drain, adjacent n-doped
diffusions) is dependent on balancing of charges in interface states and traps in the
bulk of the STI oxide.

We found 130nm technologies where ELTs and guarding were not needed
to achieve multi-Mrad tolerance...
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Episode V:
Radiation Strikes Back (in 65nm CMOS)
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There will be no further comment about leakage currents, because we did
not measure significant currents (for typical applications) in either NMOS
transistors or FOXFETs

The degradation of long and large transistors is limited:
the thin gate oxide is radiation hard!
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Irradiation conditions:
T=25C

Bias: |Vgs|=|Vds|=1.2V
Curves Id-Vg in saturation
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Radiation damage is severe in short and narrow channel transistors, where it depends
on the bias and temperature applied both during and after irradiation

Radiation-Induced Narrow Channel Effect (RINCE)
Radiation-Induced Short Channel Effect (RISCE)
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RINCE can be conceptually represented by this cartoon

W = large size

Pre-rad

p substrate

STI

100Mrad

+
+t
+

s el p substrate

NOTE: In this cartoon, there is no distinction between the positive charge trapped in the oxide or in interface traps



RINCE can be conceptually represented by this cartoon

W = minimum size

Pre-rad

STI

p substrate

100Mrad

v

p substrate

NOTE: In this cartoon, there is no distinction between the positive charge trapped in the oxide or in interface traps



RINCE: Narrow channel PMOS transistors do not work above 500Mrad,
while NMOS are working without large damage up to 1Grad
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RINCE in PMOS depends on bias and temperature

Bias during irradiation is bad!

T Irradiation T
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RISCE: Short channel PMOS are more damaged than NMOS

Damage occurs also in ELT transistors, hence it can not be due to the STI oxide

NMOS PMOS
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46



RISCE can be conceptually represented by this cartoon

Pre-rad After irradiation and/or annealing

Which defect? Which charge trapped? Where?

L=moderate size L=min size

Regions strongly influenced by the trapped charge
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RISCE in NMOS

Bias during irradiation is bad!
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lon|%)

RISCE in PMOS

Bias during irradiation is mildly influential Thermal energy during irradiation is bad!
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Annealing at high T is very bad if performed under bias!!
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The qualification procedures for CMOS foresee a 1-week annealing period
post-irradiation at 100°C. This considerably worsens the performance
of PMOS transistors.
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The post-irradiation evolution in PMOS (Vi shift) is clearly a thermally activated process

requiring the presence of bias!

Measurements and energy extraction by G.Borghello
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In the hypothesis of a single activation energy, it is possible to extract it (very
approximately) from the 4 experimental points at different temperature.

The model does not fit well the data, but it is useful to estimate the trend of
the phenomenon with temperature.

Activaction energy extraction
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According to the simple model, the post-irradiation evolution of the PMOS (Vht shift)
should be considerably slowed at -20°C
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In some of the results above we can see analogies with the phenomenology observed in
bipolar technologies subject to ELDRS (Enhanced Low Dose Rate Sensitivity)
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Results from an on-going irradiation with a ®°Co source at lower dose rate: the
damage is larger!

Beware: tests are done with different radiation sources
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Summary

The Radiation response (TID) is determined by the properties of parasitic structures.

It is not a constant property in a given technology node, and can change with supplier,
Fab, and with time.

Therefore we have to:
e only qualify and use one Fab
e monitor regularly the natural radiation tolerance
e carefully qualify each ASIC during the prototyping and production phases

In the studied 65nm:

Short and narrow channel radiation-induced effects are strong (RINCE, RISCE).

These are complex and make the choice of a qualification procedure and
of appropriate design margins difficult, in particular for digital design
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