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A high-brightness muon source is essential for a muon collider

Scheme of the MAP baseline MuC design
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Why lonization cooling?

- MAGNET ABSORBER RADIO-FREQUENCY CAVITY

Slow Beam Accelerate Forward Slow Beam Accelerate Forward Slow Beam Accelerate Forward

@ MC is a tertiary beam machine (p — © — p). Beams coming out of the target are very
large.

@ Need intense . beam = need to capture as much as possible of the initial large emittance.

@ Large aperture acceleration systems are expensive =- for cost-efficiency need to reduce
emittances prior to accelerating (“cool the beam”).

@ MC designs assume significant (O(10°)) six-dimensional cooling.

@ Need to act fast since muons are unstable. lonization cooling option fits the bill.



Transverse ionization cooling

In lonization Cooling, a particle loses energy by ionization loss passing through
material. If the particle has a transverse component, then that is reduced.

Subsequent rf acceleration restores the longitudinal component, but leaves the
reduction in the transverse component.

The minimum emittance achieved is now set by Coulomb scattering in the

material.
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Longitudinal ionization cooling/heating

« To realize the longitudinal cooling, higher
energy muons should loss more energy than
the lower energy muons through the
lonization process. But that’s not always the
case, as shown on the right plot.

« Actually at low energy, we have longitudinal
heating, and at higher energy, the
longitudinal cooling effect is still weak.

* Choose an muon kinetic energy at ~ a few
hundred MeV, where the longitudinal heating
IS weak and can be compensated by the
transverse cooling through “emittance
exchange”.
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Emittance exchange

8,) Dispersion in magnet b) Path length differences
and wedge In magnet -

* In practice, the muon is
cooled at KE ~130 MeV
where the longitudinally

the beam is slightly
A J “heated”.

...... [\
/ \ « Emittance exchange is
7 1 " | 7T required to keep the beam
L \ stable longitudinally.
LIC|IUC| H2 Gas H2

Higher momentum muons pass through more material than lower.
Momentum spread and thus Longitudinal emittance is reduced. But
the transverse beam size is increased.



Heating from Coulomb Scattering and the equilibrium emittance
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which, for a given energy change, favors cooling at low energy.
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The choice of absorber material and the cooling beam energy

At energies such as to give minimum ionization loss, the constant
(', for various materials are approximately:
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material |density dE/dx Lp
kg/m> MeV/m  m 1074
Liquid Hyo| 71 287 8.65 38

Lithium

(&p
o
I

Consatant C (10°%)

Liquid He| 125 242 755 51

LiH 820 159 0971 61 25 /Emgen
Li 530 875 155 69

Be 1850 295 0.353 89 T
Al 2700 436  0.089 248 '

Kinetic Energy (MeV)

Liquid Hydrogen is the best material, even though it requires win-
dows made of Aluminum or other material which somewhat degrade
the performance.

Lower energies cool transverse faster, but longitudinal emittances
rise faster there.



The cooling rate and the tapering of the equilibrium emittance

As one approaches the minimum emittance, the cooling rate will
decrease:

dE:I‘_‘:y _ (1 o Elllill) J;r,y dp (20)

E;I_?‘_y € P

Using an € >> ¢€(min) is impractical because of the excessive
required angular acceptance

Using e(min) — € implies slow cooling with resulting losses to
decay

Thus efficient cooling requires a 'tapered’ sequence of 'stages’
with ever decreasing /Js, while keeping €/e(min) in some reasonable
range around 2



Keeping the diverged muon beam confined by continuous focusing

solenoids in the cooling process
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MuC ionization cooling channel design: to achieve O(10e6)

emittance reduction within the short muon lifetime

Muon production and cooling design in 2024 IMCC interim report

Emittance evolution through the cooling process
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Technology challenges for building the ionization cooling channel

- m ABSORBER RADIO-FREQUENCY CAVITY
LH, absorber

Matching coils

Longitudnal phase space
rotation rf cavities

Acceleration rf
cavities

Drift for developing energy-

: = focusin:
time correlations 9

coils

Transport coils
Siow Beam Accelerate Forward Slow Beam Accelerate Forward Slow Beam Accelerate Forward

« Main technology challenges:

* High and very high magnets
» Large bore solenoidal magnets for 6D cooling: on axis field from 2 T (500 mm IR), to 14 T (250 mm IR)
« 30T or above solenoidal magnets for final cooling.

« High gradient RF within multi-T field
« Gradient ~ 30 MV/m, even higher is preferred.
* Frequency ~ 200-800 MHz.

» Absorbers that can tolerate large muon intensities

» Integration: Solenoids coupled to each other, near high power rf & absorbers)
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In the cooling channel, the surrounding multi-T solenoid field significantly

reduces the achievable gradient in the RF cavity

Kilpatrick criterion: the rule of thumb to estimate the RF gradient limit

f=1.64- E(ﬂ-ﬂfr/m)g . e85/ EMV/m) rrpr.

Thanks to the better vacuum and surface cleaning, nowadays we can comfortably expect a
2* threshold of the Kilpatrick criterion. 325 MHz -> 36 MV/m, 650 MHz -> 48 MV/m, sufficient
for MuC Ionization cooling.

Experimentally, when NCRF cavity is put into strong B field, the achievable gradient is
significantly reduced.

Maximal achievable surface electric field

=W
| —+—Mo
—#— Fermilab TiN_Cu
—=—LBNL TiN_Cu #2
—o— Pillbox

45.00 1

40.00 =&

35.00 4N\
 \!

30.00 A

R (cm)

R (cm)

25.00 4

20.00

15.00

Surface electric field (MV/m)

10.00

T T T T T T T 1
0 0.5 1 1.5 2 25 3 3.5 4 45 5

Magnetic field (T)

13



R&D on understanding the RF breakdown in multi-Tesla environment and its

mitigation to achieve stable operation at required accelerating fields

805 MHz iris loaded cavity with a beam 0> MHCavr[y Button test 805 MHz Box cavity 805 MHz cavity with
envelope matched aperture LI

alumina insert

Shrink the diameter of

To find materials and coatings that 10 study the breakdown the gas-loaded cavity

can withstand high surface electric ~ mechanism with adjustable
field in strong magnetic field. angle between E, B field

directions
805 MHz Cavity with grid windows

805 MHz all-season cavity | 805 MHz LBL cavity with demountable windows
201 MHz prototype cavity r—

' 4 WA E—
X . 201 MHz cavity
a2 7 — '
A o A N
+

18

\[ ™ Vacuum Window

RF Window, Be

. A versatile cavity for both vacuum
Alterr)atlve to the fully covered and high-pressure test.
Be windows
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Vacuum modular cavity demonstration

Material B-field (T) 50G (MV/m) BDP (x1077)

0 24.4 =07 1.8 =04
3 129 +04 0.8+0.2
0 41.1 + 2.1 1.1 +0.3
| Be 3 =498 £ 2.5 0.2 +0.07 |
Be/Cu 1] 439 0.5 LIs = 118
Be/Cu 3 10.1 = 0.1 048 =014

The latest R&D cavity is the 805 MHz modular cavity.

« The power feeding coupler is moved to torus to reduce E_peak at the coupler.

« Cavity geometry is optimized to minimize the effects of dark current and the multipacting with B field.

« Cleaning and polishing interior cavity surfaces to reduce the density of field emission sites.
 Investigating the role of material type, production, surface conditioning, etc. in the breakdown process.
Achieve the steady operation at ~ 50 MV/m in B=3T environment with Be walls.
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Gas-filled cavity demonstration
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* The RF breakdown gradient of copper, molybdenum, and beryllium electrodes was determined using hydrogen
gas. The breakdown gradient is the same for molybdenum electrode with and without an external 3 T B field,
achieving a gradient about 50 MV/m.

* Beam test with proton beam has been carried out to characterize the effect of beam on the cavity performance,
aka, plasma loading. Plasma loading reduces the cavity stored energy as well as the gradient.

* A 3D electromagnetic particle-in-cell code with atomic physics processes, SPACE, has been developed and
benchmarked for predicting the plasma loading.
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MICE RF module: a comprehensive engineering demonstration

A prototype RF module was tested at Fermilab MTA and achieved the target operation level in a 4T
solenoid fringe field.

With further improvement, two RF modules were produced at LBNL, but eventually not operated at
MICE due to limited resources.

Several key engineering features for the ionization cooling NCRF cavities have been demonstrated
or examined in MICE RF module:
An SRF-type polishing procedure to smooth the cavity surface thus to suppress the field emission.
Geometry design and TiN coating to suppress multipacting.

Curved beryllium windows of 0.38mm and the relevant thermal deformations and LFD.

Pressure regulation to protect Be windows from the vacuum burst.

Frequency tuning arms controlled by pressurized actuators.

O

O O O O O

Etc.

Parameter MICE MTA Unit
Frequency 201.250  201.250 MHz
Peak gradient ~ 10.3 10.6 MV/m
Average power 1.6 1.9 kW
Rf pulse width 1 1/6 ms

Rf rep rate 1 5 Hz
Tuner reprate 1 1 Hz
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New possible approaches utilizing recent R&D advancements

« Besides continuing the pathway of current directions, the recent accelerator R&D advancements offer new
possible approaches to develop high gradient RF cavities operated in strong B field.
» Cool copper RF cavity

o Copper cavity operated at LN2 temperature shows significantly stronger resilience to RF breakdown than at room
temperature.

o Discovered in the campaign for high gradient NCRF for future linear colliders.

o This technology is being applied to the proposed linear collider C3 (with a demo planned for ~2029), high-brightness
electron gun, etc.
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 Low power RF tests show promising results.
* High power RF tests are underway.

High power test set-up at SLAC
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New possible approaches utilizing recent R&D advancements

« Besides continuing the pathway of current directions, the recent accelerator R&D advancements offer new
possible approaches to develop high gradient RF cavities operated in strong B field.

» Cool copper RF cavity

o Copper cavity operated at LN2 terpnasnts
temperature.

o Discovered in the campaign for hig
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Besides RF cavities, SRF solenoids and absorbers have their own

challenges as well

Leave the review of SRF solenoids to my colleagues at SuperCon.

A few comments on the absorbers:
o Heating in the LH2 absorbers, ultra-thin absorber windows, LH2 alternatives.
o Experimental data of high intensity muon’s interaction with absorber materials.
« Important for validating the cooling simulation.

« Muon lonization Cooling Experiment (MICE) experimentally benchmarked the LH2 and
LiH for the low intensity muons.

Compactly integrating the high power RF, SRF solenoids and absorbers is an
engineering challenge of its own.
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A staged demonstrator for the MuC high-brightness muon source

« Parameters are aspirational and may need modifications based on
available funding and resources

RF studies in B-fields

*

) ' . . .
) it Material studies & cryogenic Cu
g °a”“”3LI YOOENE MU < 7 years from today
i cail . 600-800 MHz NC cavity, with coils
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g L _ | Cell resembles late 6D cooling
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= P | | Coils producing 7-10 T axial
0 > / M L i fields
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12 08/09/24 Muon Collider Meeting D. Stratakis
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