

MM for ATLAS upgrade

GEM for CMS upgrade

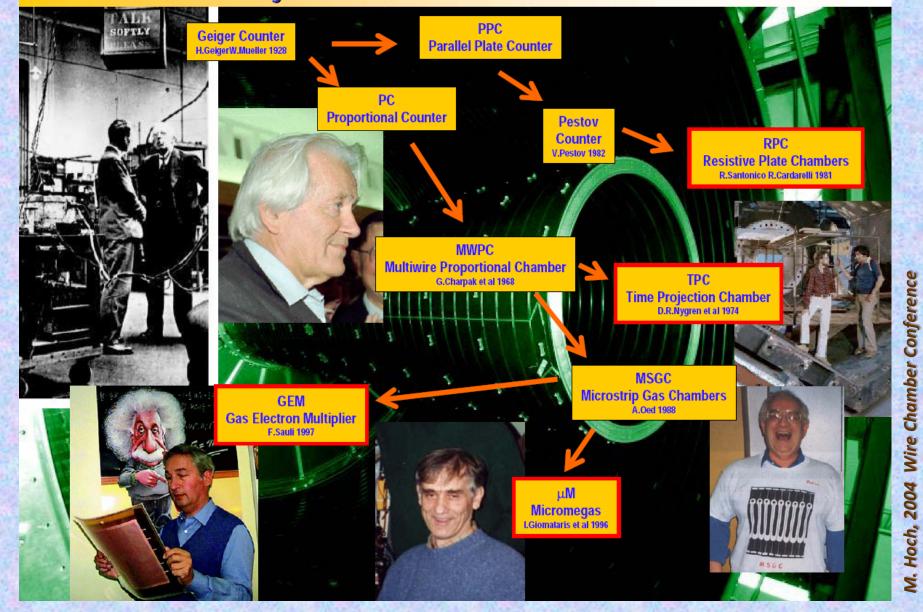
THGEM for COMPASS upgrade Micro-Pattern Gas Detector Concepts for Physics Projects at the Energy, Intensity and Cosmic Frontiers and Overview of the RD51 Collaboration Activities

Maxim Titov, CEA Saclay, France

OUTLINE of the TALK:

Introduction: Rise of MPGD Technologies

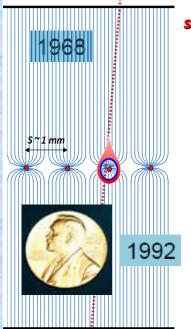
MPGD Technologies for Present and Future:


- Hadron / Nuclear Physics Experiments
- Heavy Ion Facilities
- High Energy Physics: Hadron / Lepton Colliders
- Photon / Neutron Detection
- Neutrino Physics / Dark Matters Detection
- X-Ray Detection and γ-Ray Polarimetry

RD51 Collaboration Technology Highlights

LBNL Seminar, Berkeley, USA, April 22, 2016

History of Gaseous Detector Developments


Gas Detector History

Multi-Wire Proportional Chamber (MWPC)

Gaseous proportional tracking detectors that revolutionized High Energy Physics

11/11

High-rate MWPC with digital readout: Spatial resolution is limited to $s_* \sim s/sqrt(12) \sim 300 \ \mu m$

> TWO-DIMENSIONAL MWPC READOUT CATHODE INDUCED CHARGE (Charpak and Sauli, 1973)

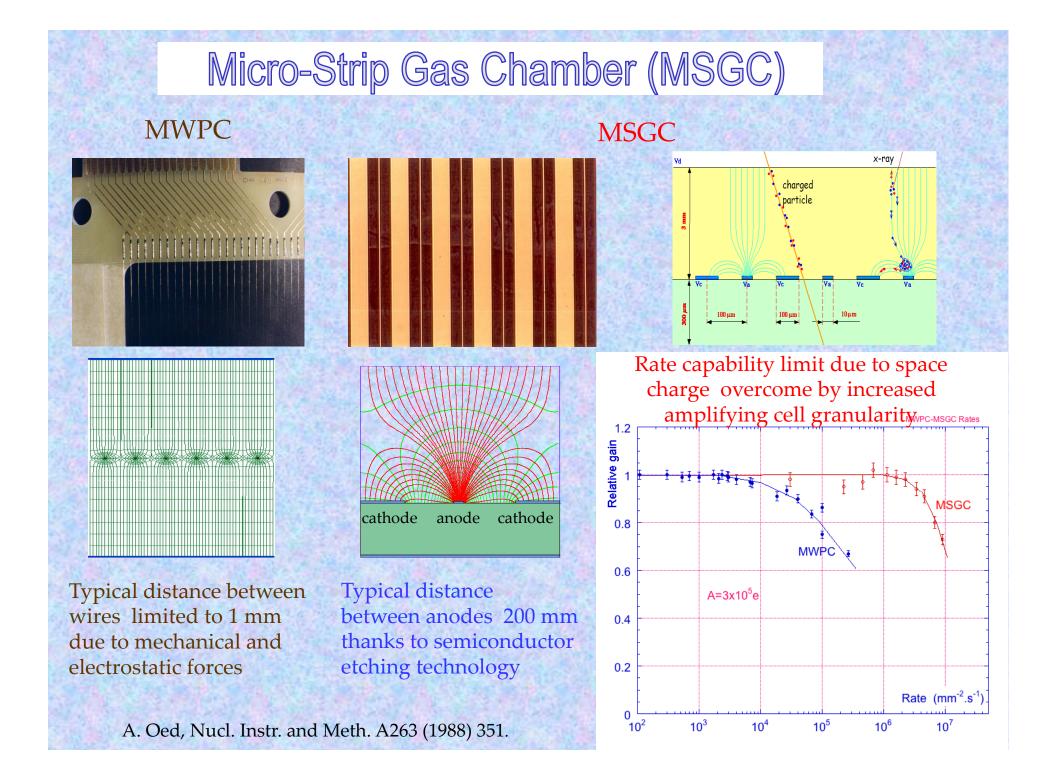
Spatial resolution determined by: Signal / Noise Ratio Typical (i.e. 'very good') values: S ~ 20000 e: noise ~ 1000e Space resolution < 100 µm

With Fabio Sauli et Jean Claude Santiard The 1st "Large Wire Chamber"...

The invention revolutionized particle detection, which passed from the manual to the electronic era.

> Georges Charpak 1924 – 2010

Nobel Prize: W, Z - Discovery at UA1/UA2 (1983)

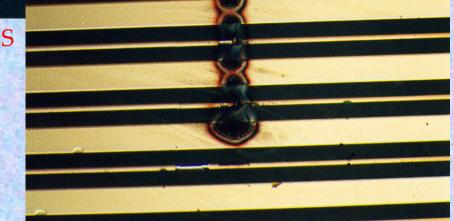

UA1 used <u>the largest imaging</u> <u>drift chamber of its day</u> (5.8 m long, 2.3 m in diameter)

It can now be seen in the CERN Microcosm Exhibition Particle trajectories in the CERN-UA1 3D Wire Chamber Discovery of W and Z bosons C. Rubbia & S. Van der Meer Nobel Prize 1984

 $Z \rightarrow ee$ (white tracks)

Gaseous Detectors in LHC Experiments							
	Vertex	lnner Tracker	PID/ photo- det.	EM CALO	HAD CALO	MUON Track	MUON Trigger
ATLAS	-	TRD (straws)	-	-	-	MDT (drift tubes), CSC	RPC, TGC (thin gap chambers)
CMS TOTEM	-	-	-	-	-	Drift tubes, CSC, GEM	RPC, CSC GEM
LHCb	-	Straw Tubes	-	-	-	MWPC	MWPC, GEM
ALICE	-	TPC (MWPC)	TOF(MRPC), PMD, HPMID (RICH-pad chamber), TRD (MWPC)	-	-	Muon pad chambers	RPC
ALTER Straw tubes							
Gaseous detectors are still the first choice whenever the large-area coverage (e.g. muon systems) with low material budget is required							

Micro-Pattern Gaseous Detector Technologies for Future Physics Projects MWPC / **Rate Capability:** Micromegas \succ **Drift Chamber** MWPC vs MSGC ~1mm C-MSGC Rates 1.2 gain **GEM** \triangleright Relative g HI HIT T. MSGC 0.8 Thick-GEM, Hole-Type and RETGEM MWPC 0.6 100 um A=3x10⁵e MPDG with CMOS pixel ASICs ("InGrid") >0.4 0.2 Micro-Pixel Chamber (µPIC) Rate (mm⁻².s⁻¹) 10 µm 0 10² 10³ 10⁴ 10⁵ 10⁶ 107 Micromegas THGEM **GEM MHSP** μPIC lons x-ray **Cathode Plane** Drift Cathode Drift plane HV1 = 730\ Cathode Mesh 1 ₽ E_{Drift} **↑**E_{drift} Conversion Gap MHSP Top Ionisation Region Cathode Strip THGEM 1 1 kV/cm Anode Strip Transfer Gap Amplification Region 40 kV/cm THGEM 2 Ē. MS region Hole region Ionising Particle Induction Gap Anode Mesh Electrons Cathode Plane InGrid 11 22 SE

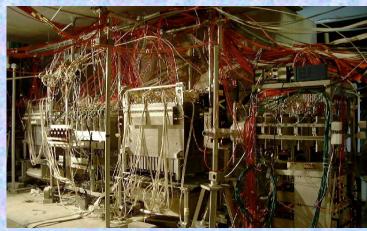

MSGC Discharge Problems

and the state of the state

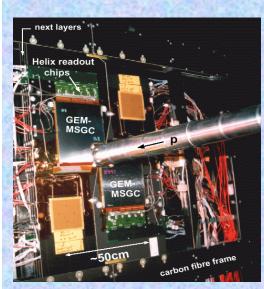
Discharge is very fast (~ns) Difficult to predict or prevent

MICRODISCHARGES

Owing to very small distance between anode and cathode the transition from proportional mode to streamer can be followed by spark, discharge, if the avalanche size exceeds RAETHER'S LIMIT $Q \sim 10^7 - 10^8$ electrons

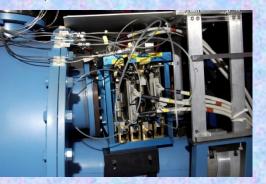


FULL BREAKDOWN

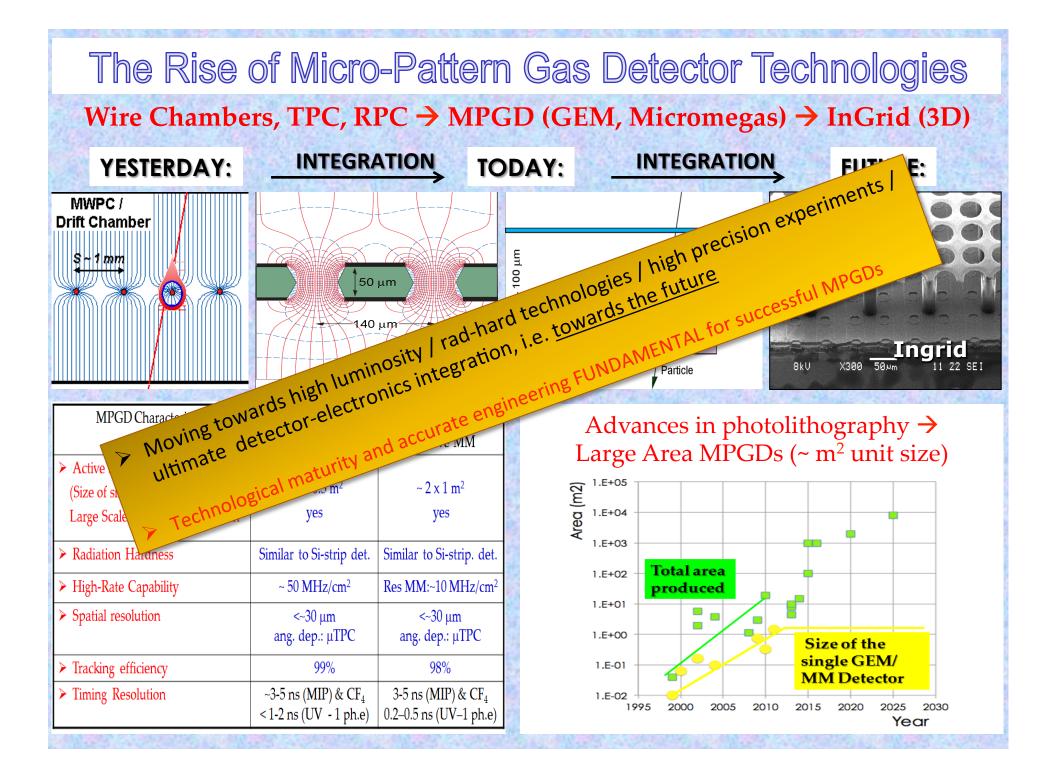

L-06

W. Faidley - Weatherstock Inc

Micro-Strip Gas Chamber (MSGC)

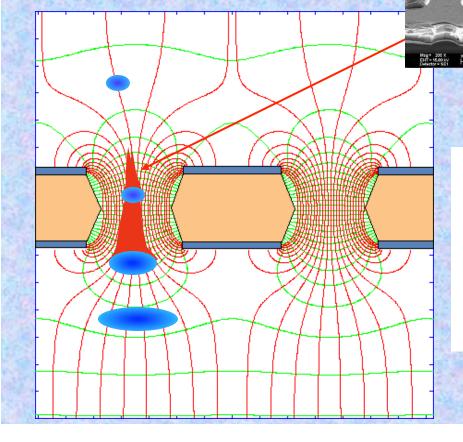


Telescope of 32 MSGCs tested at PSI in Nov99 (CMS Milestone)


DIRAC 4 planes MSGC-GEM Planes 10x10 cm²

HERA-B Inner Tracker MSGC-GEM detectors $R_{min} \sim 6 \text{ cm}$ $\Rightarrow 10^6 \text{ particles/cm}^2 \text{ s}$ 300 µm pitch 184 chambers: max 25x25 cm² $\sim 10 \text{ m}^2$; 140.000 channels

The D20 diffractometer MSGC is working since Sept 2000 1D localisation 48 MSGC plates (8 cm x 15 cm) Substrate: Schott S8900 Angular coverage : 160° x 5,8° Position resolution : 2.57 mm (0,1°) 5 cm gap; 1.2 bar CF4 + 2.8 bars 3He

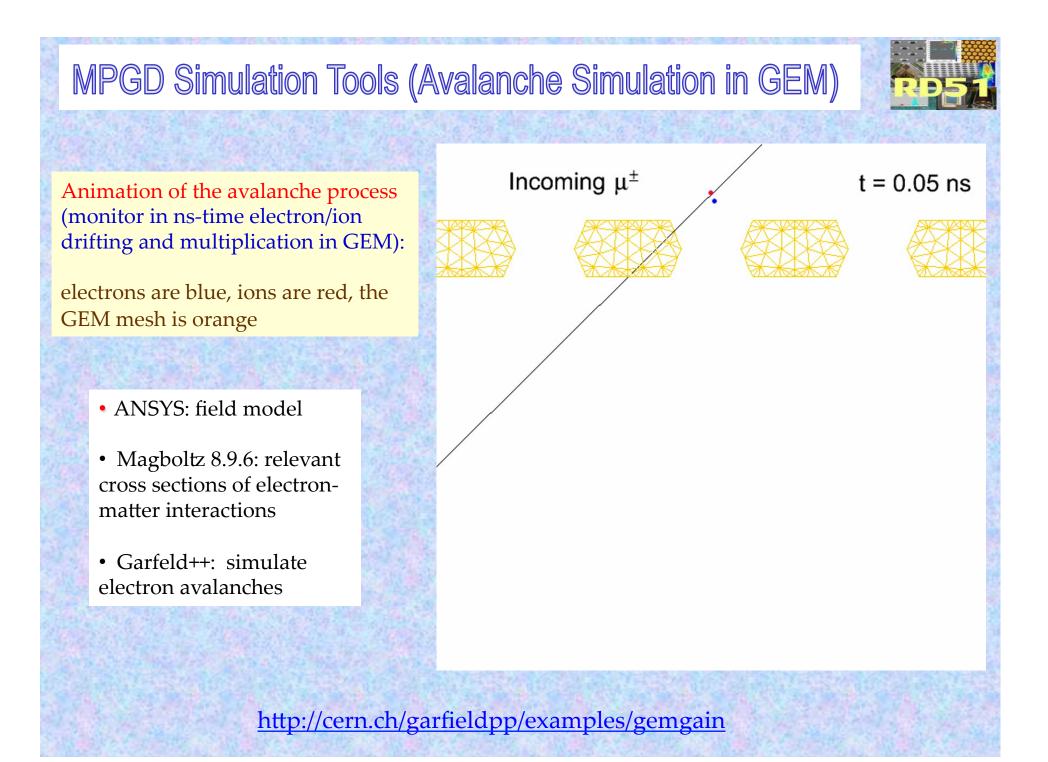


GEM (Gas Electron Multiplier)

Thin metal-coated polymer foil chemically pierced by a high density of holes

A difference of potentials of ~ 500V is applied between the two GEM electrodes.

→ the primary electrons released by the ionizing particle, drift towards the holes where the high electric field triggers the electron multiplication process.

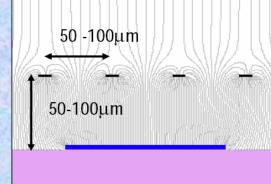


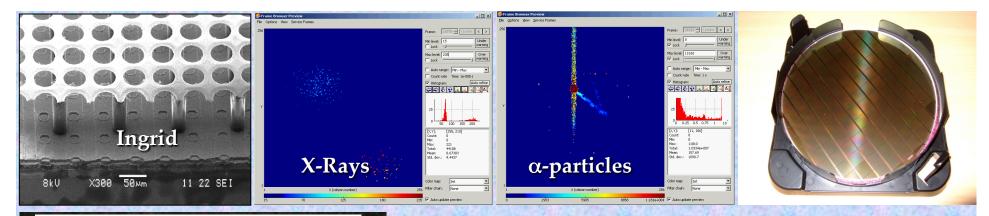
Contraction gap

ST SZ S3 S4

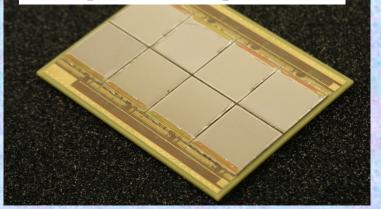
- Electrons are collected on patterned readout board.
- A fast signal can be detected on the lower GEM electrode for triggering or energy discrimination.
- All readout electrodes are at ground potential.

F. Sauli, Nucl. Instrum. Methods A386(1997)531F. Sauli, http://www.cern.ch/GDD

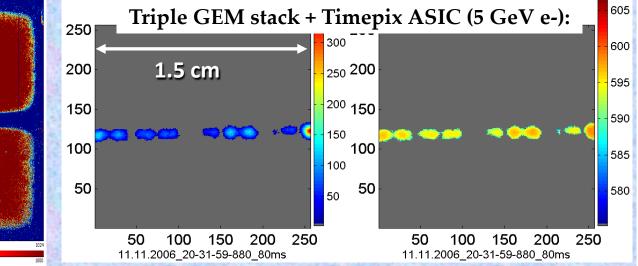


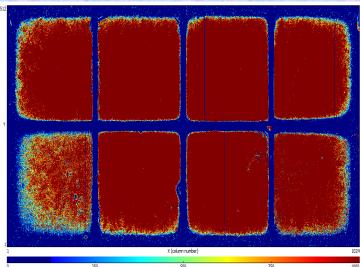

MICro MEsh GAseous Structure (MICROMEGAS)

Micromesh Gaseous Chamber: micromesh supported by 50-100 µm insulating pillars


Multiplication (up to 10⁵ or more) takes place between the anode and the mesh and the charge is collected on the anode (one stage)

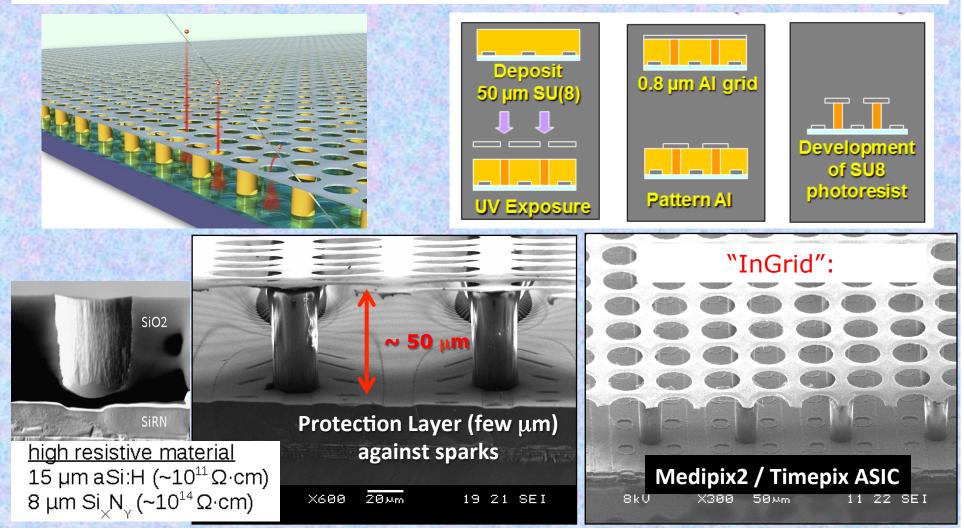
Small gap: fast collection of ions

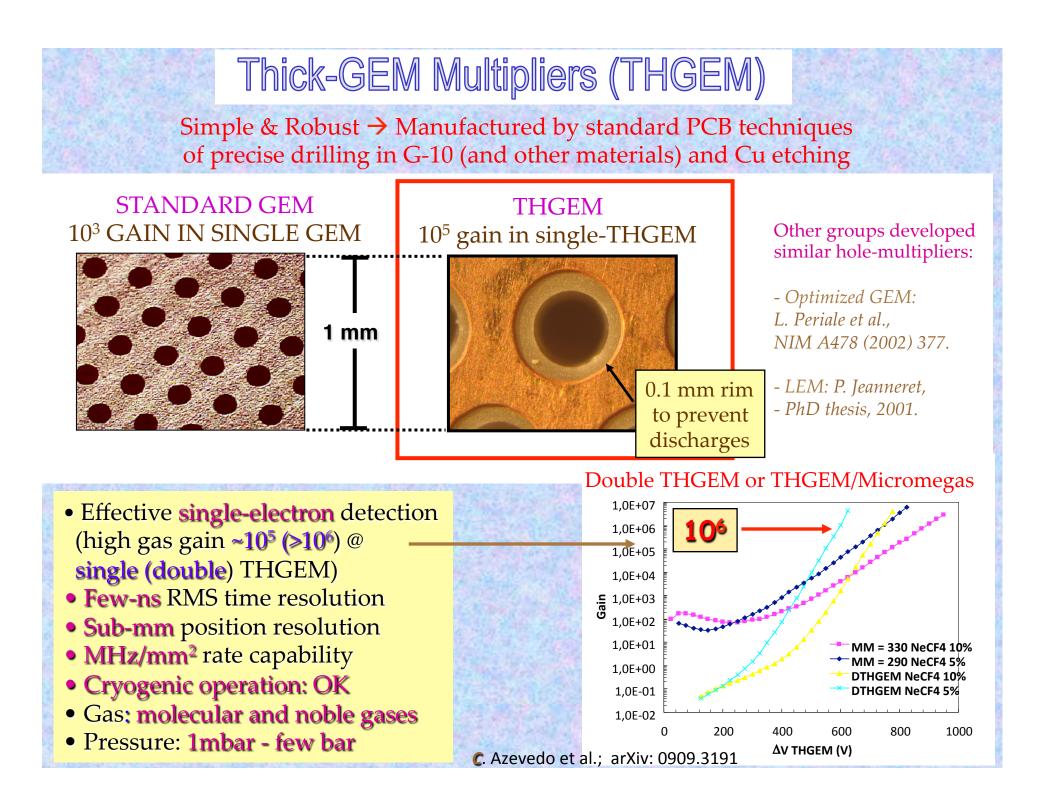



"Octopuce" (8 Timepix ASICs):

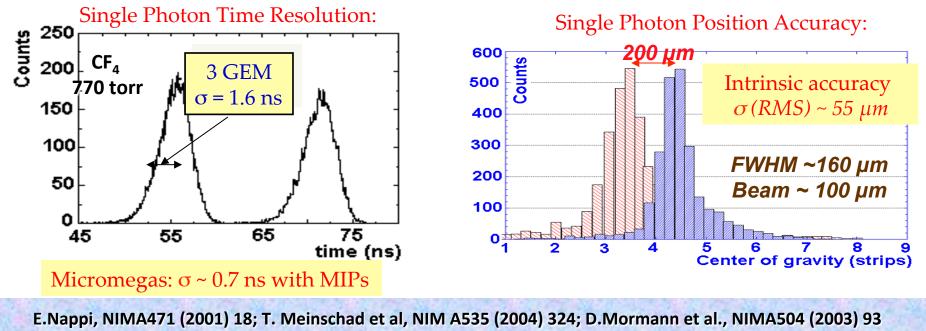
INSTRUMENTATION FRONTIER:

PIXEL READOUT OF MPGDs – Ultimate Gas-Silicon Detector Integration





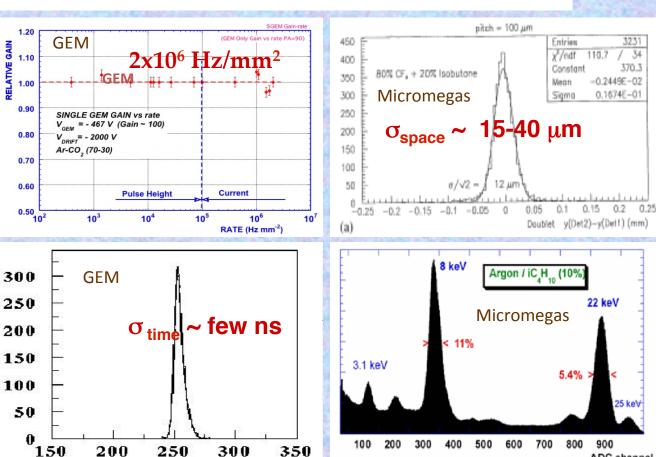
Pixel Readout of MPGDs: "InGrid" Concept


"InGrid" Concept: By means of advanced wafer processing-technology INTEGRATE MICROMEGAS amplification grid directly on top of CMOS ("Timepix") ASIC

3D Gaseous Pixel Detector \rightarrow 2D (pixel dimensions) x 1D (drift time)

MPGD-Based Gaseous Photomultipliers (GPM) GEM Gaseous Photomultipliers (GEM+CsI photocathode) to detect single photoelectrons Semitransparent Reflective Photocathode (PC) Photocathode (PC) Multi-GEM Gaseous Photomultipliers: Csl ~2500 A Largely reduced photon feedback Csl ~ 500 # (can operate in pure noble gas & CF_4) Fast signals [ns] \rightarrow good timing * Excellent localization response * Able to operate at cryogenic T

Why Micro-Pattern Gaseous Detectors are so attractive ...


- High Rate Capability
- High Gain
- High Space Resolution
- Good Time Resolution
- Good Energy Resolution
- Excellent Radiation Hardness
- Ion Backflow Reduction
- Photon Feedback Reduction

One of the recent reviews describing the progress of the RD51 collaboration:

World Scientific

w.worldscientific.com

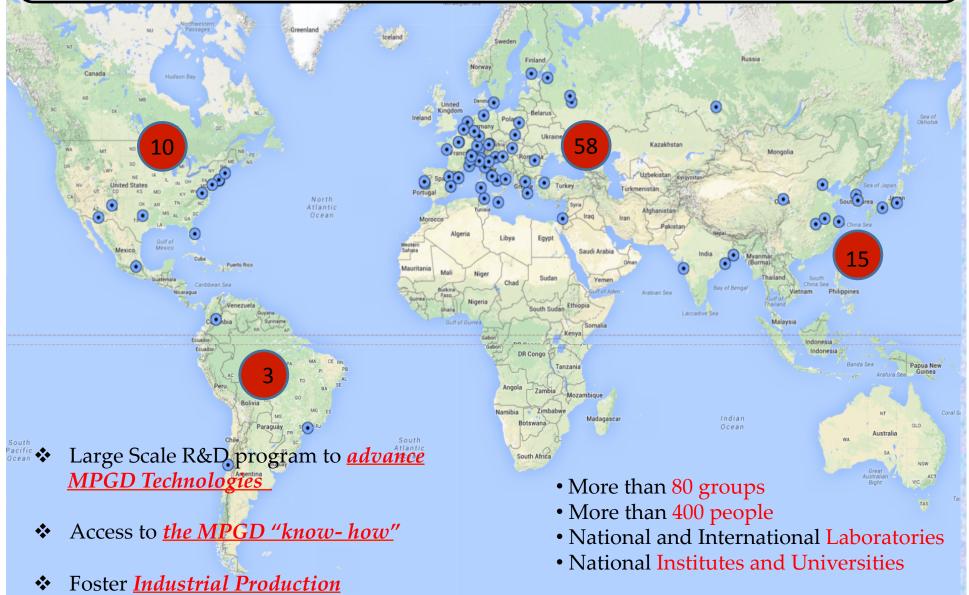
Modern Physics Letters A Vol. 28, No. 13 (2013) 1340022 (25 pages) © World Scientific Publishing Company DOI: 10.1142/S021773231340022

ADC channel

MICRO-PATTERN GASEOUS DETECTOR TECHNOLOGIES AND RD51 COLLABORATION

 $CEA \ Saclay, \ DSM/IRFU/SPP, \ 91191 \ Gif \ sur \ Yvette, \ France \\ maxim.titov@cea.fr$

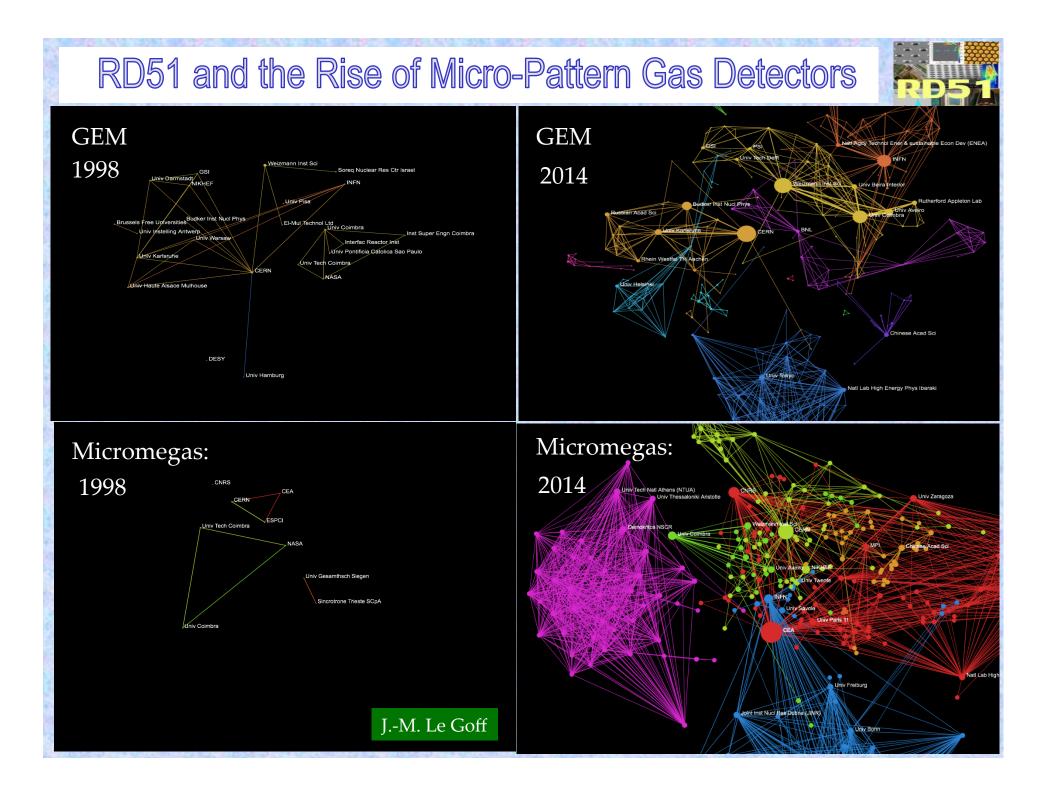
LESZEK ROPELEWSKI


CERN PH, CH-1211, Geneva 23, Switzerland leszek.ropelewski@cern.ch

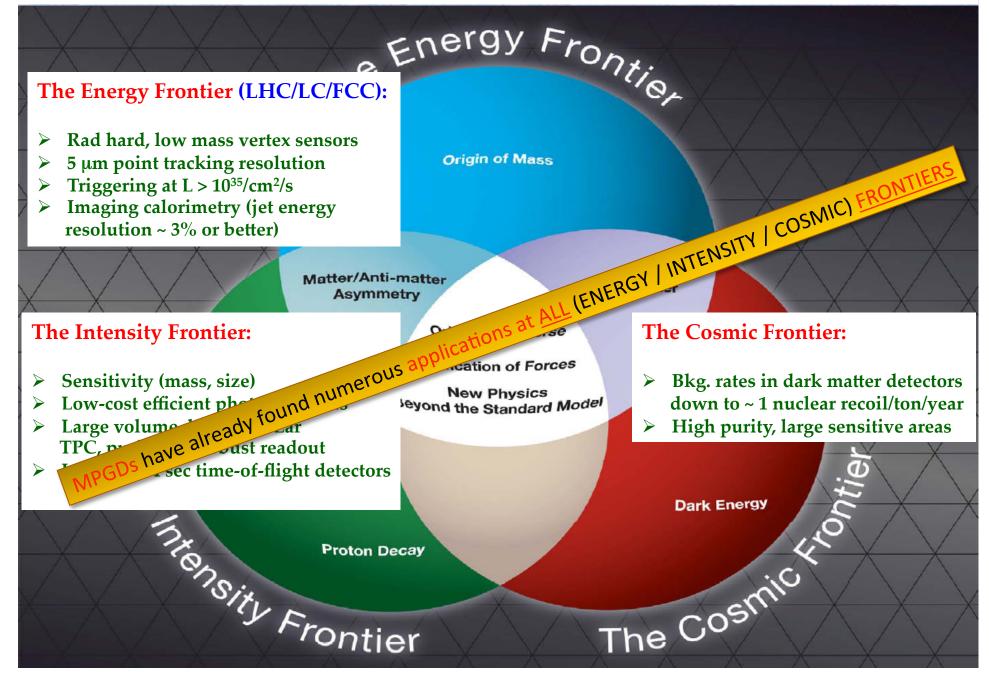
- Many of the Micro-Pattern Gaseous Detector Technologies were introduced before the RD51 Collaboration was founded
- With more techniques becoming available (or affordable), new detection concepts are being introduced and the existing ones are substantially improved

The main objective is to advance MPGD technological development and associated electronic-readout systems, for applications in basic and applied research": <u>http://rd51-public.web.cern.ch/rd51-public</u>

RD51 and the Rise of Micro-Pattern Gas Detectors A <u>fundamental boost</u> is offered <u>by RD51</u>: from isolate MPGD developers to a worldwide net Pontificia Universidade Catolica de Sao Paulo niversidade de Coimbra Karlsruhe Institute of Technology iversidade de Coimbra INFN INFN Weizmann Institute of Science uperieure de Physique et de Chimie Industrielles de la Ville de Paris Iniversidade de Aveir CEA CERN CEA Weizmann Institute of Science OREQ NUCL RES CTR Marshall Space Flight Center demy of Sciences National Aeronautics & Space Administration (NASA) Academy of Sciences ntre National de la Recherche Scientifique (CNRS United States Department of Energy (DOE) Vrije University of Brussels Centre National de la Recherche Scientifique (CNRS) University Libre Brussels A combined map of organizations working with MPGDs built with collaboration-spotting J.-M. Le Goff software developed at CERN Map: RD51 Map: RD51 \rightarrow huge growth in interest in the MPGD technologies Current year: 2015 Current year: 1998 Organisations: 717 40/717 Organisations: Clusters: **Collaboration Spotting Software:** 12 Clusters: 5

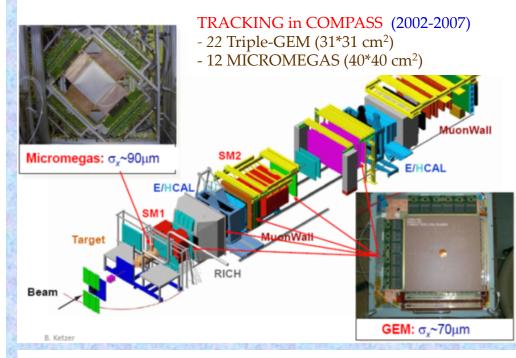

Publications:

Publications:


35/1059

1059

http://collspotting.web.cern.ch/)



Challenges for Future Detectors: Experimental Opportunities

MPGD Tracking Concepts for <u>Hadron / Nuclear Physics</u>					
Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
COMPASS @ CERN Run: 2002 - now	Hadron Physics (Tracking)	GEM Micromegas w/ GEM preampl.	Total area: 2.6 m ² Single unit detect: 0.31×0.31 m ² Total area: ~ 2 m ² Single unit detect: 0.4×0.4 m ²	Max.rate:10^7 Hz (~100kHz/mm ²) Spatial res.: ~70-100 μm (strip), ~120μm (pixel) Time res.: ~ 8 ns Rad. Hard.: 2500 mC/cm ²	Required beam tracking (pixelized central / beam area)
KEDR @ BINP Run: 2010-now	Particle Physics (Tracking)	GEM	Toral area: ~0.1 m ²	Max. rate:1 MHz/mm ² Spatial res.: ~70µm	
SBS in Hall A @ JLAB Start: > 2017	Nuclear Physics (Tracking) nucleon form factors / struct.	GEM	Total area: 14 m ² Single unit detect. 0.6x0.5m ²	Max. rate:400 kHz/cm ² Spatial res.: ~70μm Time res.: ~ 15 ns Rad. Hard.: 0.1-1 kGy/y.	
pRad in Hall B @ JLAB Start: 2017	Nuclear Physics (Tracking) precision meas. of proton radius	GEM	Total area: 1.5m ² Single unit detect. 1.2x0.6 m2	Max. rate:5 kHz/cm ² Spatial res.: ~70μm Time res.: ~ 15 ns Rad. Hard.: 10 kGy/y.	
SoLID in Hall A@ JLAB Start: ~ > 2020	Nuclear Physics (Tracking)	GEM	Total area: 40m ² Single unit detect. 1.2x0.6 m2	Max. rate :600 kHz/cm ² Spatial res.: ~100μm Time res.: ~ 15 ns Rad. Hard.: 0.8-1 kGy/y.	
E42 and E45 @JPARC Start: ~2020	Hadron Physics (Tracking)	TPC w/ GEM, gating grid	Total area: 0.26m ² 0.52m(diameter) x0.5m(drift length)	Max. rate:10 ⁶ kHz/cm ² Spatial res.: 0.2-0.4 mm	Gating grid operation ~ 1kHz
ACTAR TPC Start: ~2020 for 10 y.	Nuclear physics Nuclear structure Reaction processes	TPC w/ Micromegas (amp. gap -220 μm)	2 detectors: 25*25 cm2 and 12.5*50cm2	Counting rate < 10 ⁴ nuclei but higher if some beam masks are used.	Work with various gas (He mixture, iC4H10, D2)

COMPASS Experiment – First Large Scale Use of GEMs and Micromegas

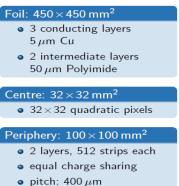
Aging of PixelGEM Detectors:

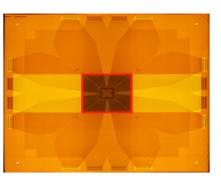
For some detectors from first batch \rightarrow efficiency loss

B. Ketzer

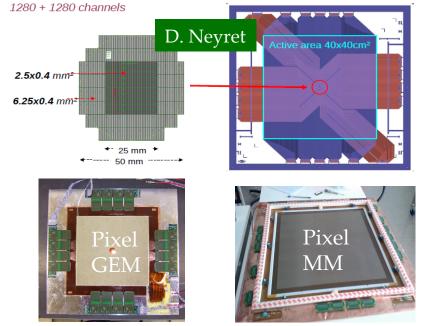
88594: 27 October 2010, 19:07

Total charge collected:

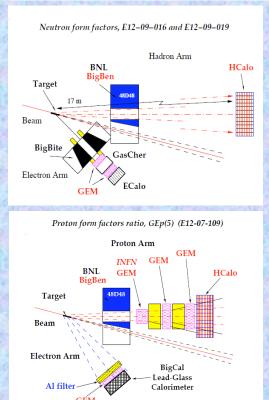

-2008/2009 (p beam): (500 ±20) mC/cm⁻» - 2010/2011 (m beam): (1000±20) mC/cm

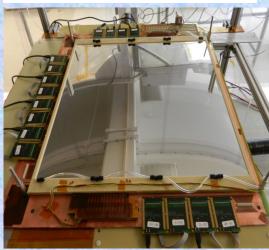

Tracked down to Si deposits on GEM; culprit were gas leaks that allowed Si from an outside sealant to migrate into chamber \rightarrow

"OLD Lesson": Never, ever use materials containing Si


Since > 2008: Detectors active in beam area with pixel read-out (used for beam tracking)

Pixelised GEM:

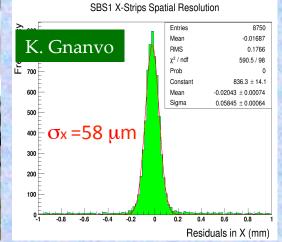


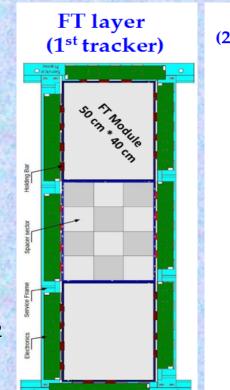


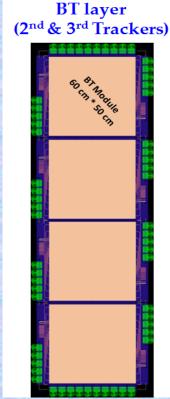
Pixelised MM with GEM preamplification:

GEM Tracker of the SuperBigBite Spectrometer at Hall A @ JLAB

•SBS Physics

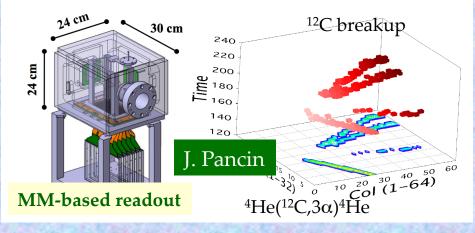

- Nucleon Form Factors (FFs) -
- Nucleon Structures
- **•SBS detectors:**
- Large Luminosity &
- moderate acceptance
- Independent arm
- (re-configurable detectors)


Front Tracker


6 layers of active area 150x50cm2

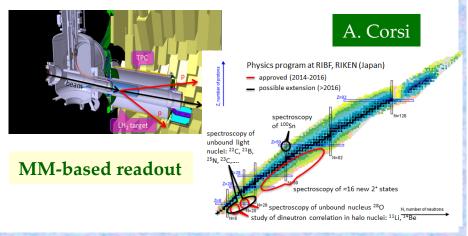
Back Tracker

2*5 layers of active area 200x60 cm2



Several Examples of TPC Tracking in Nuclear Physics Projects

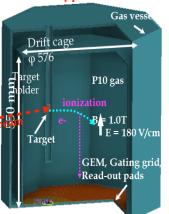
The ACTAR TPC Project:


(gas is used as a secondary target for nuclear reactions):

Goal: Nuclear structure with rare-isotope beams

The MINOS TPC: coupling liquid H2 target (10-20 cm) to a Vertex tracker (TPC)

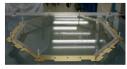
GOAL: spectroscopy of the most exotic nuclei

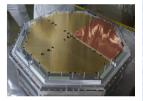


HypTPC for J-PARC E42/E45 Experiments:

E42 (H-dibaryon search)
 $K^- C \rightarrow K^+ \Lambda \Lambda X \rightarrow K^+ p \pi^+ p \pi^+ X$ H. SakoE45 (Baryon resonance measurements)
 $\pi^{\pm} p \rightarrow \pi^+ \pi^{\pm} n, \pi^{\pm} p \rightarrow \pi^{\pm} \pi^0 p$

- High beam rate operation at 10⁶Hz
- Ion backflow suppression with triple-stack GEMs and the gating grid
- Large acceptance
- with the target holder inside the drift volume


HypTPC will complete in Jan 2016, and a beam test will be performed in Feb 2016
 HypTPC HypTPC (Oct 2015) Gating g

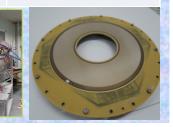


GEM-based readout

Gating grid

GEMs and pads

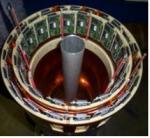
Cylindrical MPGDs as Inner Trackers for Particle / Nuclear Physics					
Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
KLOE-2 @ DAFNE Run: 2014-2017	Particle Physics/ K-flavor physics (Tracking)	Cylindrical GEM	Total area: $3.5m^2$ 4 cylindrical layers L(length) = 700mm R (radius) = 130, 155, 180, 205 mm	Spatial res :(r phi) = 250um Spat. res.(z) = 350um	- Mat. budget 2% X0 - Operation in 0.5 T
BESIII Upgrade @ Beijing Start: ~ 2018-2022	Partcile Physics/ e+e- collider (Tracking)	Cylindrical GEM	3 cylindrical layers R ~ 20 cm	Max. rate: 10 kHz/cm ² Spatial res:(xy) = 130um Spat. res.(z) = 1 mm	- Material ≤ 1.5% of X ₀ for all layers - Operation in 1T
CLAS12 @ JLAB Start: > 2016	Nuclear Physics/ Nucleon structure (tracking)	Planar (forward) & Cylindrical (barrel) Micromegas	Total area: Forward ~ 0.6 m ² Barrel ~ 3.7 m ² 2 cylindrical layers R ~ 20 cm	Max. rate: ~ 30 MHz Spatial res.: < 200µm Time res.: ~ 20 ns	Low materialbudget : 0.4 % X0Remote electronics
ASACUSA @ CERN Start: 2014 - now	Nuclear Physics (Tracking and vertexing of pions resulting from the p-antip annihilation	Cylindrical Micromegas 2D	2 cylindrical layers L = 60 cm R = 85, 95 mm	Max. trigger rate: kHz Spatial res.: ~200µm Time res.: ~ 10 ns Rad. Hard.: 1 C/cm ²	- Large magnetic field that varies from -3 to 4T in the active area
MINOS Start: 2014-2016	Nuclear structure	TPC w/ cylindrical Micromegas	1 cylindrical layer L=30 cm, R = 10cm	Spatial res.: <5 mm FWHM Trigger rate up to ≈1 KHz	- Low material budget
CMD-3 Upgrade @ BINP	Particle physics (z-chamber, tracking)	Cylindrical GEM	Total arear: ~ 3m ² 2 cylindrical layers	Spatial res.: ~100µm	

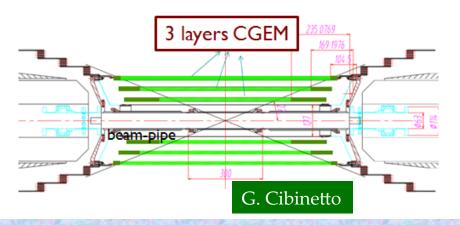

Start: > ~2019 ?

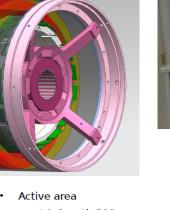

Cylindrical GEMs Inner Trackers for KLOE2 and BESIII Experiments

Cylindrical GEM Inner Tracker for the KLOE2:

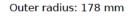
8 years of R&D and construction:

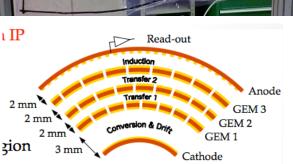

 Intrinsic lightness and flexibility of the GEM allowed to develop a vertex detector with a total thickness of 2% of a radiation length




The final assembly of the KLOE-2 Inner Tracker, with the insertion of all the triple-CGEMs one into the other took place in March 2013

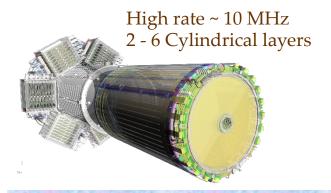
Cylindrical GEM Inner Tracker for the BESIII: Replace the existing inner drift chamber with three layers of Cylindrical GEM.

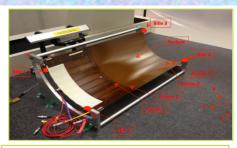


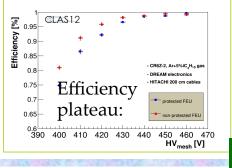


1 IP

- L1: length 532 mm
- L2: length: 690 mm
- L3: length: 847 mm
- Inner radius: 78 mm





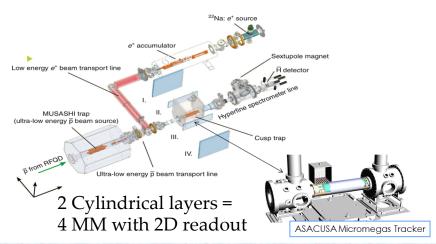

4th LNF Workshop on Cylindrical GEM Detectors: https://agenda.infn.it/conferenceDisplay.py?confId=9782

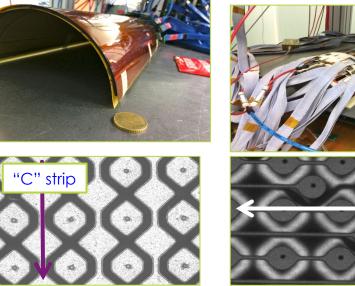
Cylindrical MM Inner Trackers for CLAS12 and ASACUSA Experiments

CLAS12 Central Tracker@ JLAB GOAL: Study of the nucleon structure with high 12 GeV electron beam at high luminosity:

- 1st curved Micromegas
- 1st use in 5T field
- 1st use of remote elec
- Resistive technology; High rate (30 MHz)

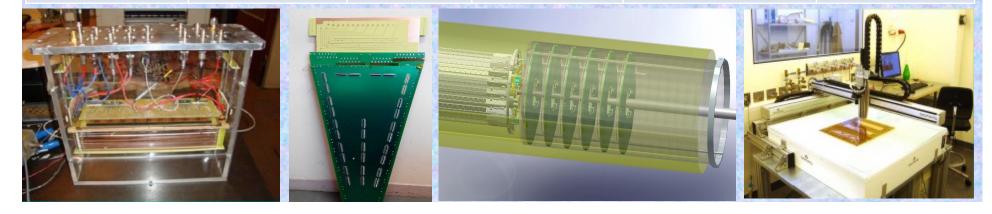
Electric leak tes





"Z" strip

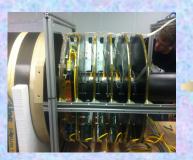
ASACUSA experiment : spectroscopy of anti-Hat the Anti-Proton Decelerator (AD) at CERN


GOAL : Vertex reconstruction inside the EM trap where the anti-H is produced with ~1cm resolution

MPGD Tracking for Heavy Ion / Nuclear Physics

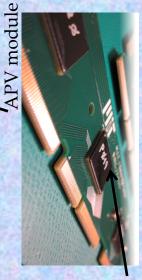
Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
STAR Forward GEM Tracker @ RHIC Run: 2012-present	Heavy Ion Physics (tracking)	GEM	Total area: ~ 3 m ² Single unit detect: ~ 0.4 x 0.4 m ²	Spatial res.: 60-100 μm	Low material budget:: < 1% X0 per tracking layer
Nuclotron BM@N @ NICA/JINR Start: > 2017	Heavy Ions Physics (tracking)	GEM	Total area: ~ 12 m ² Single unit detect: ~ 0.9 m ²	Max. rate : ~ 300 MHz Spatial res.: ~ 200µm	Magnetic field 0.5T orthogonal to electric field
SuperFRS @ FAIR Run: 2018-2022	Heavy Ion Physics (tracking/diagnostics at the In-Fly Super Fragment Separator)	TPC w/ GEMs	Total area:~ few m ² Single unit detect: Type I : $50 \times 9 \text{ cm}^2$ Type II: $50 \times 16 \text{ cm}^2$	Max. rate:~ 10^7 Hz/spill Spatial res.: < 1 mm	High dynamic range Particle detection from p to Uranium
PANDA @FAIR Start > 2020	Nuclear physics p - anti-p (tracking)	Micromegas/ GEMs	Total area: ~ 50 m^2 Single unit detect: ~ 1.5 m^2	Max. rate: < 140kHz/cm ² Spatial res.: ~ 150µm	Continuous-wave operation: 10 ¹¹ interaction/s
CBM @ FAIR: Start: > 2020	Nuclear Physics (Muon System)	GEM	Total area: 9m ² Single unit detect: 0.8x0.5m ² ~0.4m ²	Spatial res.: <1 mm Max. rate: 0.4 MHz/cm ² Time res.: ~ 15ns Rad hard.: 10 ¹³ n.eq./cm ² / year	Self-triggered electronics

STAR Forward GEM Tracker (FGT)

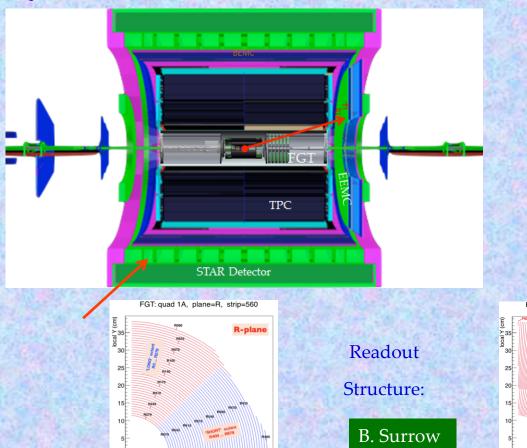


Quarter section

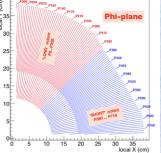
Layout:



Disk

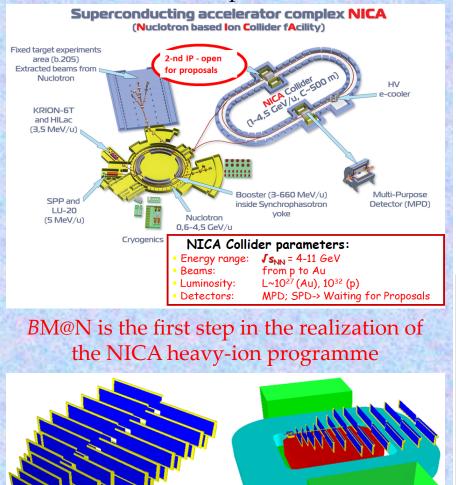


Quarter section



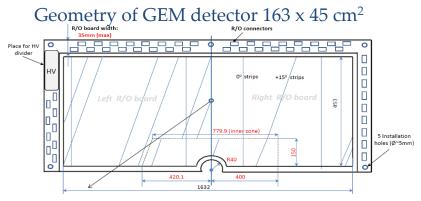
Packaged APV chip

10 15 20 25 30 35 local X (cm) FGT: quad 1A, plane=Phi, strip=720



FGT GEM foil

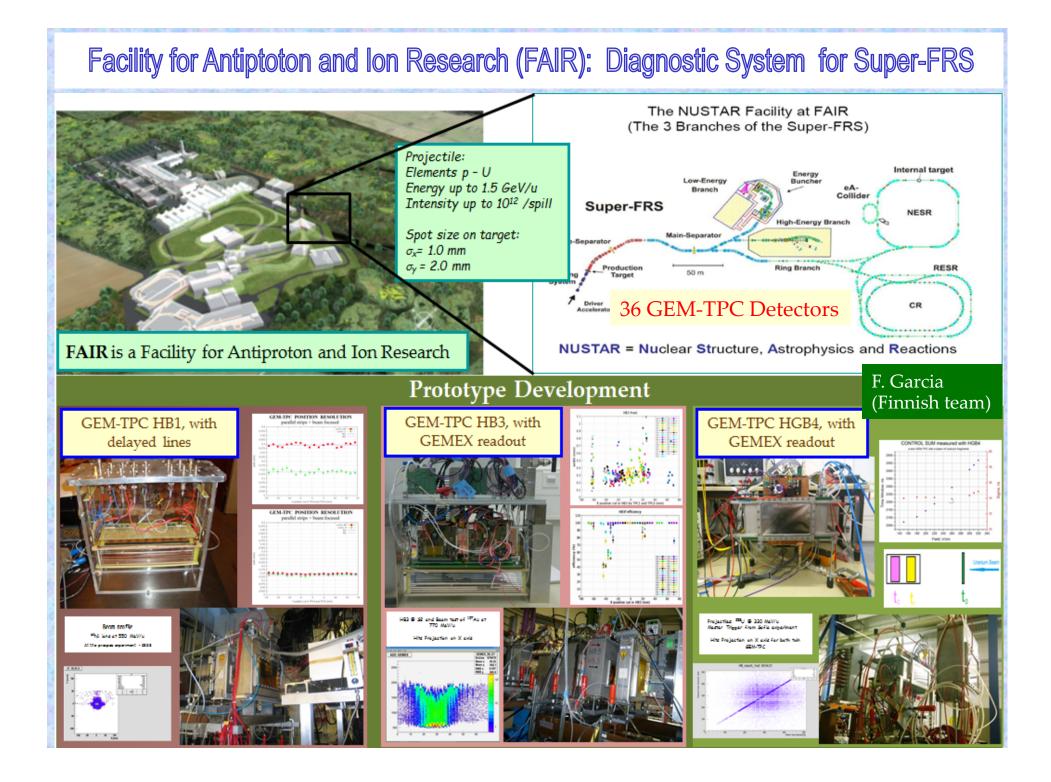
Nuclotron-based heavy Ion Collider fAcility (NICA) @ Dubna


Study of hot and dense baryonic matter and Nucleon spin structure

GEM in Stations 1 - 4

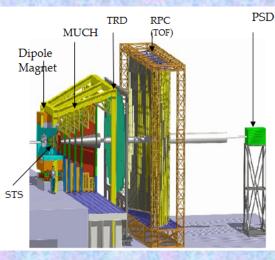
A. Karjavine

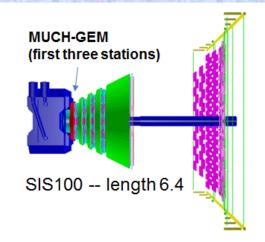
GEM Detectors for Baryonic Matter at Nuclotron (BM@N) Project:


For tracking in technical run in beg 2016 plan to have 4+1 detectors 66×41 cm² and detector 163×45 cm²

GEM detector 66x41 cm² produced at CERN workshop:

First GEM serial tests

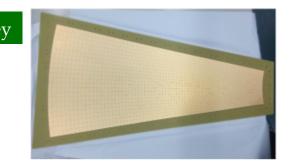


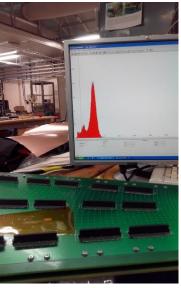

Facility for Antiptoton and Ion Research (FAIR): GEM Detector for CBM MUCH

CBM Muon Chamber (MUCH) based on novel concept of segmented absorbers and detector stations

Aim: to detect dimuon signals from low mass vector mesons and J/ψ

Experiments	Energy range (Au/Pb beams)	Reaction rates Hz
STAR@RHIC BNL	$\sqrt{s_{NN}}$ = 7 – 200 GeV	1 – 800 (limitation by luminosity)
NA61@SPS CERN	E _{kin} = 20 – 160 A GeV √s _{NN} = 6.4 – 17.4 GeV	80 (limitation by detector)
MPD@NICA Dubna	√s _{NN} =4.0 – 11.0 GeV	~7000 (design luminosity of 10 ²⁷ cm ⁻² s ⁻¹ for heavy ions)
CBM@FAIR Darmstadt	E_{kin} = 2.0 – 35 A GeV $\sqrt{s_{NN}}$ = 2.7 – 8.3 GeV	10 ⁵ – 10 ⁷ (limitation by detector)



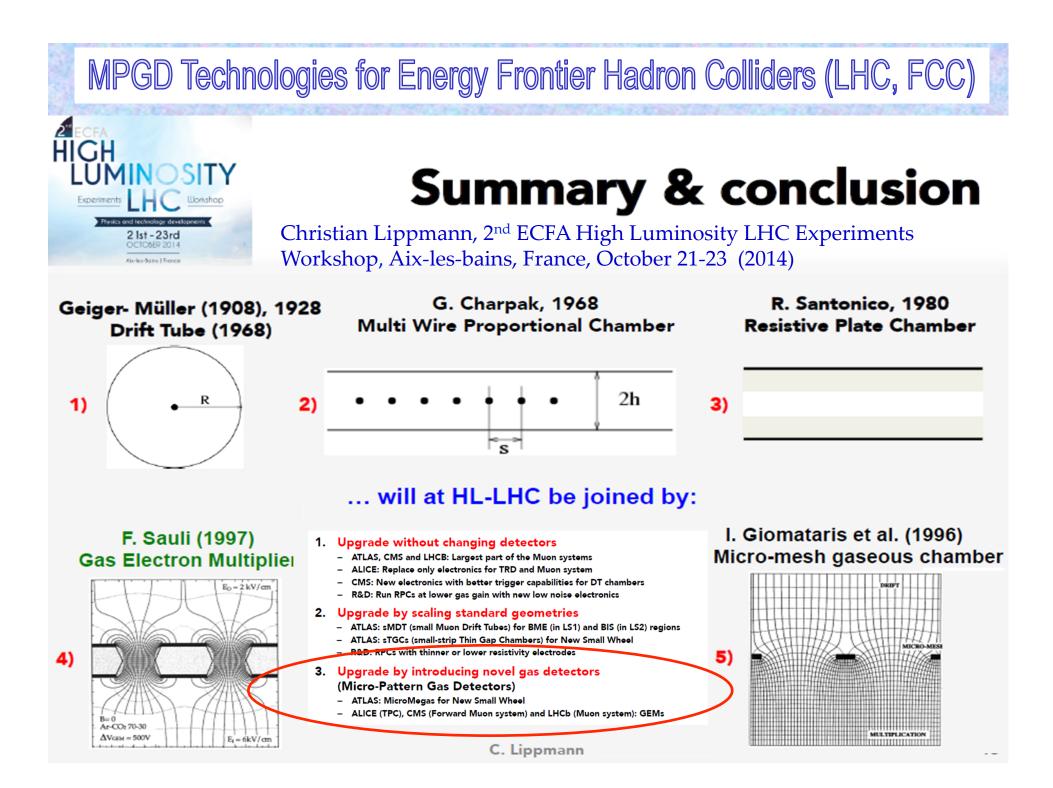

First Real size GEM Prototype for CBM MUCH:

Readout PCB with projective geometry, Fabricated in India

The Energy Frontier Lanscape: Present and Future (HL-LHC, LC, FCC)

Lepton Collider is the essential complement to the LHC (the next highest priority machine)

- HL-LHC: upgrade of the LHC
 Increase in luminosity by factor of 10
- ➤ ILC: International Linear Collider
 → e+e- collider based on SRF technology (√s = 0.25 – 1 TeV)


> CLIC

→ e+e- collider based on warm X-band technology ($\sqrt{s} = 0.5 - 3$ TeV)

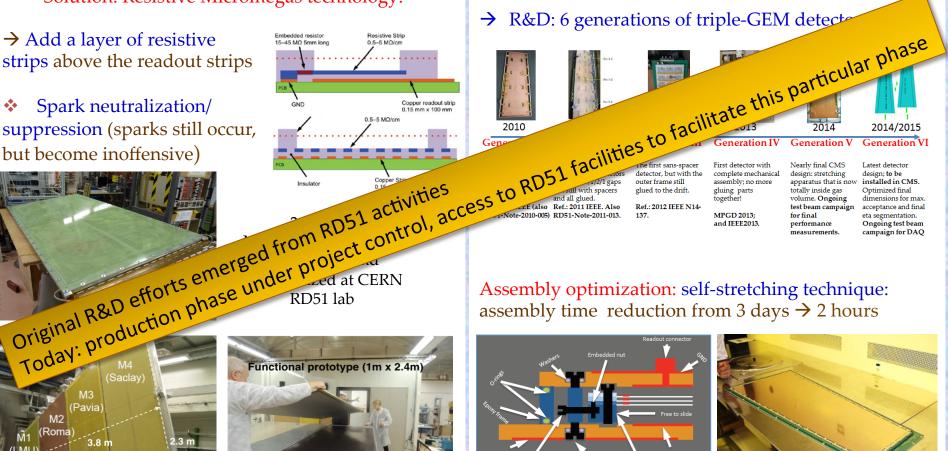
ILC

Very recent proposals:
 → CERN: FCC (pp, ep, ee)
 → China: CepC, SppC

Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks
ATLAS Muon System Upgrade: Start: 2019 (for 15 y.)	High Energy Physics (Tracking/Triggering)	Micromegas	Total area: 1200 m^2 Single unit detect: $(2.2x1.4m^2) \sim 2-3 \text{ m}^2$	Max. rate:15 kHz/cm ² Spatial res.: <100µm Time res.: ~ 10 ns Rad. Hard.: ~ 0.5C/cm ²	- Redundant tracking and triggering; Challenging constr. in mechanical precision:
ATLAS Muon Tagger Upgrade: Start: > 2023	High Energy Physics (Tracking/triggering)	μ -PIC	Total area: ~ 2m ²	Max.rate:100kHz/cm ² Spatial res.: < 100µm	
CMS Muon System Upgrade: Start: > 2020	High Energy Physics (Tracking/Triggering)	GEM	Total area: ~ 143 m ² Single unit detect: 0.3-0.4m ²	Max. rate:10 kHz/cm ² Spatial res.: ~100μm Time res.: ~ 5-7 ns Rad. Hard.: ~ 0.5 C/cm ²	- Redundant tracking and triggering
CMS Calorimetry (BE) Upgrade Start > 2023	High energy Physics (Calorimetry)	Micromegas, GEM	Total area: ~ 100 m ² Single unit detect: 0.5m ²	Max. rate: 100 MHz/cm ² Spatial res.: ~ mm	Not main option; could be used with HGCAL (BE part)
ALICE Time Projection Chamber: Start: > 2020	Heavy-Ion Physics (Tracking + dE/dx)	GEM w/ TPC	Total area: ~ 32 m ² Single unit detect: up to 0.3m ²	Max.rate:100 kHz/cm ² Spatial res.: ~300μm Time res.: ~ 100 ns dE/dx: 12 % (Fe55) Rad. Hard.: 50 mC/cm ²	 - 50 kHz Pb-Pb rate; - Continues TPC readout - Low IBF and good energy resolution
TOTEM: Run: 2009-now	High Energy/ Forward Physics (5.3≤ eta ≤6.5)	GEM (semicircular shape)	Total area: ~ 4 m ² Single unit detect: up to 0.03m ²	Max.rate:20 kHz/cm ² Spatial res.: ~120µm Time res.: ~ 12 ns Rad. Hard.: ~ mC/cm ²	Operation in pp, pA and AA collisions.
LHCb Muon System Run: 2010 - now	High Energy / B-flavor physics (muon triggering)	GEM	Total area: ~ 0.6 m ² Single unit detect: 20-24 cm ²	Max.rate:500 kHz/cm ² Spatial res.: ~ cm Time res.: ~ 3 ns Rad. Hard.: ~ C/cm ²	- Redundant triggering
FCC Collider Start: > 2035	High Energy Physics (Tracking/Triggering/ Calorimetry/Muon)	GEM,THGEM Micromegas, μ-PIC, InGrid	Total area: 10.000 m ² (for MPGDs around 1.000 m ²)	Max.rate:100 kHz/cm ² Spatial res.: <100µm Time res.: ~ 1 ns	Maintenance free for decades

GEM / Micromegas : Technology Developments Highlights

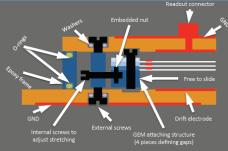
Development and optimization of large-area MPGDs for tracking and triggering

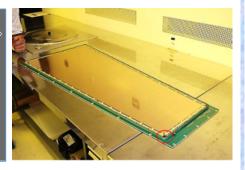

MM for the ATLAS Muon System Upgrade: GEMs for the CMS Muon System Upgrade:

Standard Bulk MM suffers from limited efficiency at high rates due to discharges induced dead time Solution: Resistive Micromegas technology:

 \rightarrow Add a layer of resistive strips above the readout strips

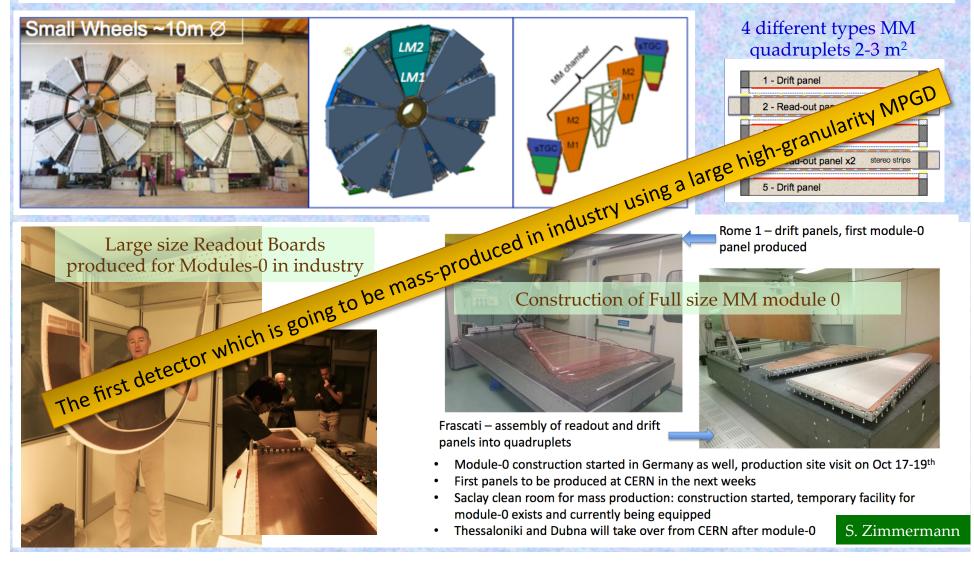
suppression (sparks still occur, but become inoffensive)





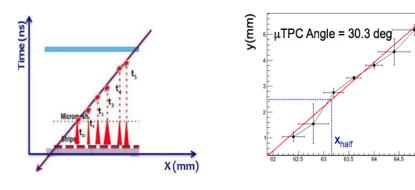
Single-mask GEM technology (instead of double-mask) \rightarrow Reduces cost /allows production of large-area GEM

 \rightarrow R&D: 6 generations of triple-GEM detector

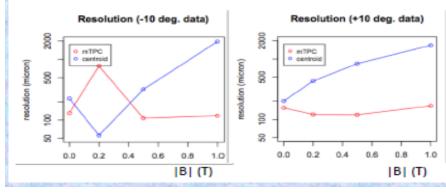

n	Nearly final CMS	Lates
ical	design: stretching	desig
e	apparatus that is now	insta
	totally inside gas	Opti
	volume. Ongoing	dime
	test beam campaign	acce
	for final	eta s
	performance	Ong
	measurements.	cam

ATLAS Muon System: Small Wheel Upgrade with Micromegas

- Replacement of the present innermost endcap muon stations equipped with MDT and CSC in LS2 shutdown
- New Small Wheels (NSW): 16 layers per side, 128 Micromegas and 192 sTGC
 - → reduction of fake muon trigger rate; improved rate capability for tracking
 - → Combine precision and 2nd coordinate measurement & trigger functionality in a single device

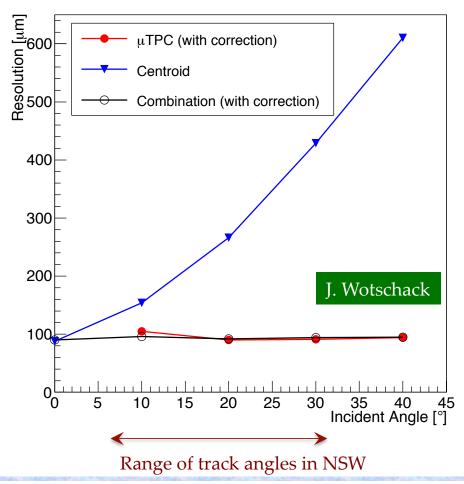

Resistive Micromegas Performace: Resolution vs Track Angle

x(mm)

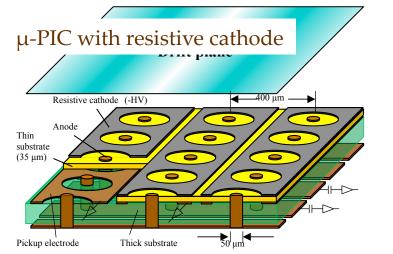

Using charge amplitude (Centroid hit)
 Spatial resolution rapidly decreases for inclined tracks if the cluster centroid (e.g., charge weighting) is used; small strip pitch does not help

Using time information (TPC segment)

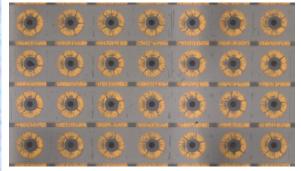
Measuring the arrival time of the signals opens a new dimension; in this case the MM functions like a TPC => Track vectors/plane for inclined tracks

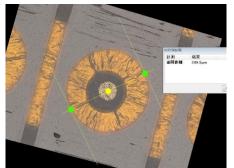

Spatial resolution vs magnetic field:

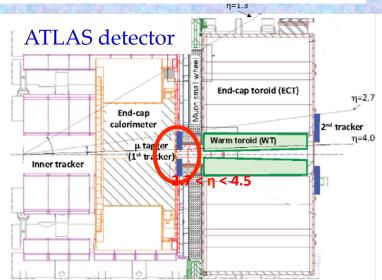
Combination of centroid & TPC \rightarrow


spatial resolution < 100 μ m independently of track incident angle !

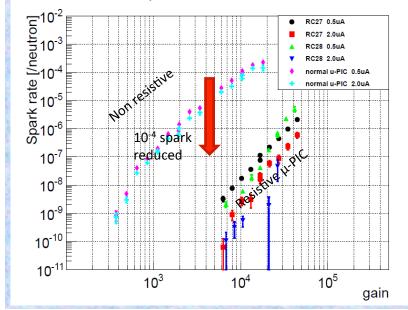
Single Plane Spatial Resolution

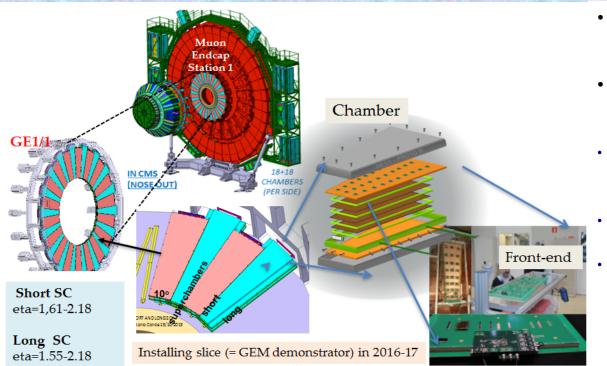

Micro-Pixel Chamber (µPIC) For ATLAS Muon HL-LHC Upgrade


- For ATLAS muon tagger (High eta muon detector)
 - Proposed for Phase II upgrade 2023~
 - Need high granularity ~ 0.1mm
 - BG rate > 100kHz/cm2 (HIP, gamma)
- Rate tolerant, Pixel type detector needed
- µ-PIC with resistive cathodes is proposed/studied

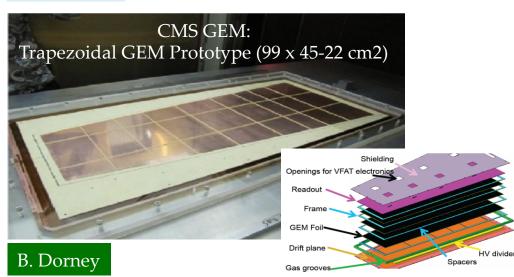


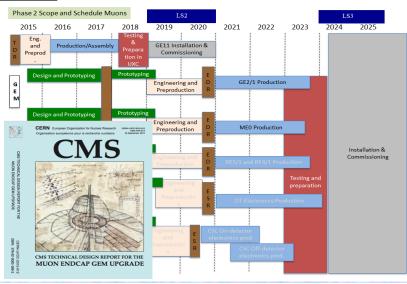
A. Ochi

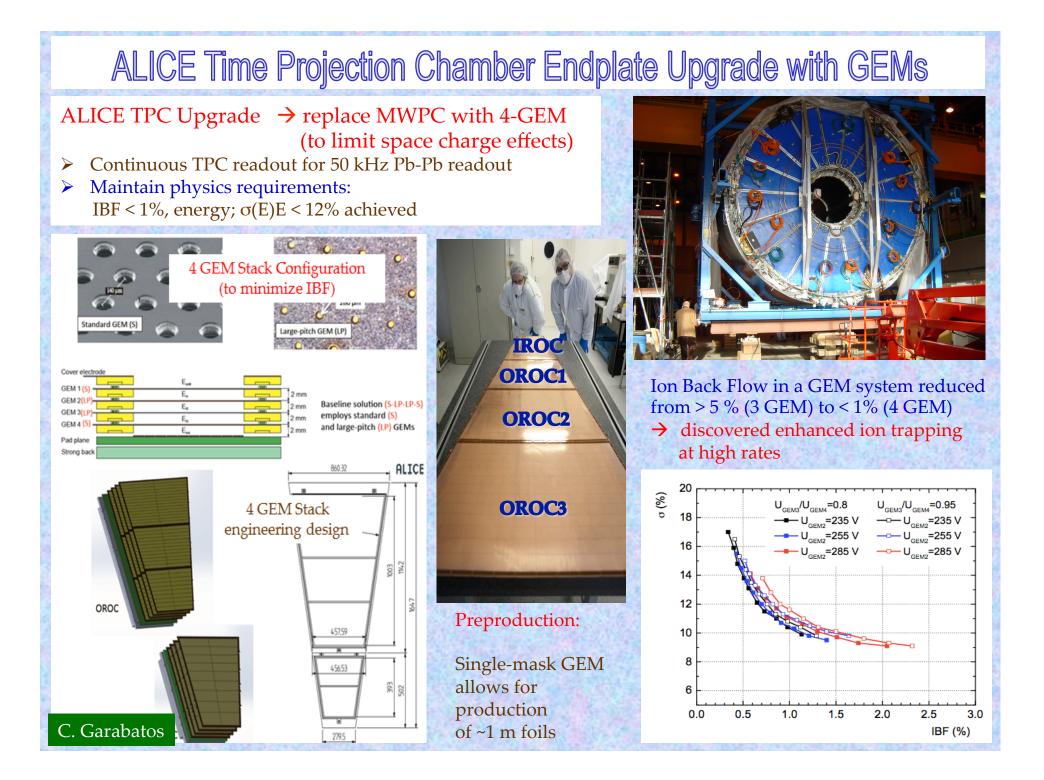

Resistive μ -PIC using sputtered carbon

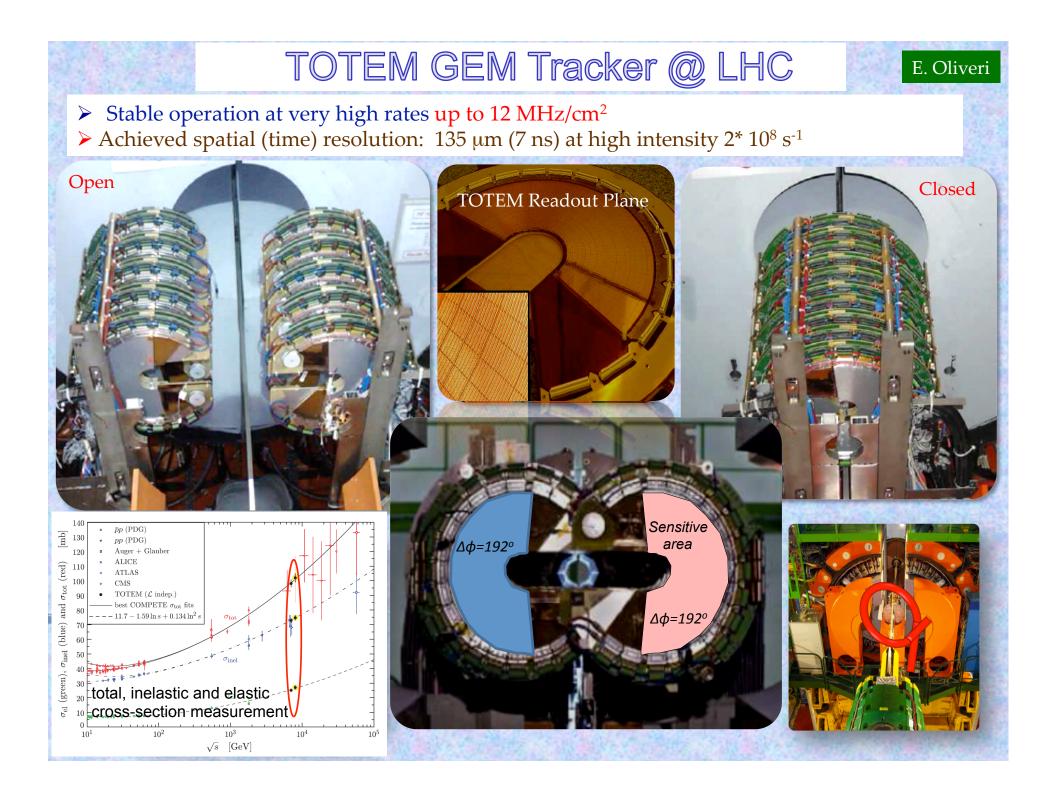


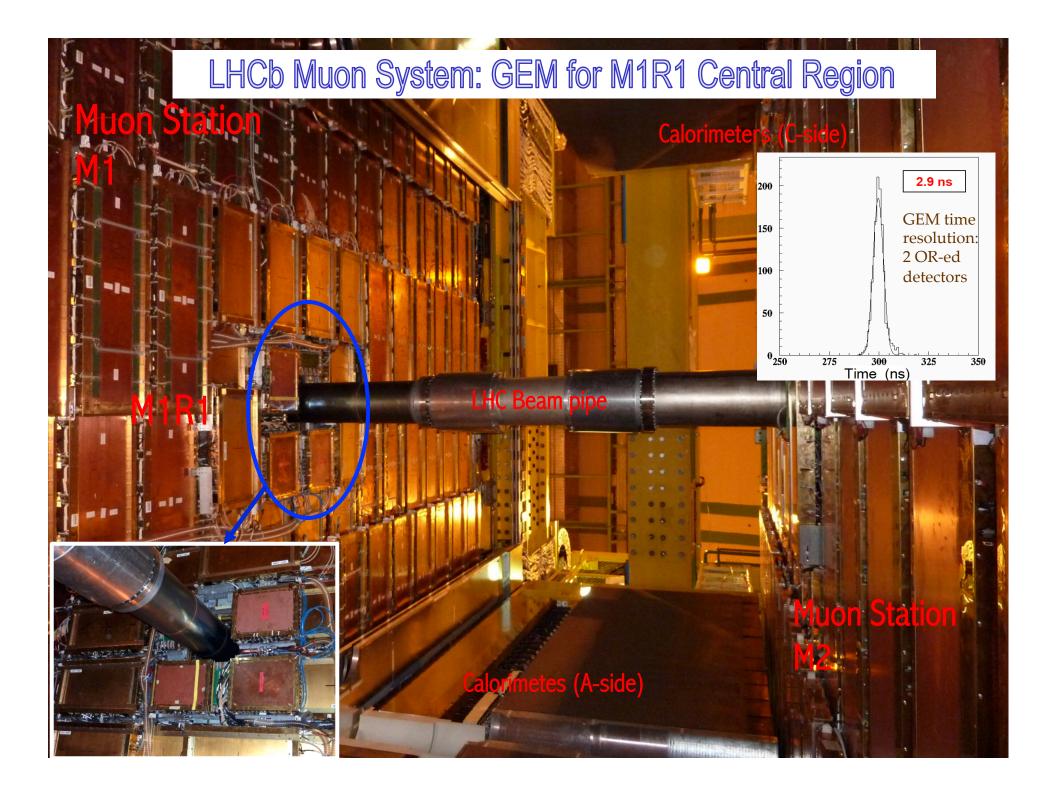
Spark rate reduction using resistive μ -PIC for fast neutron

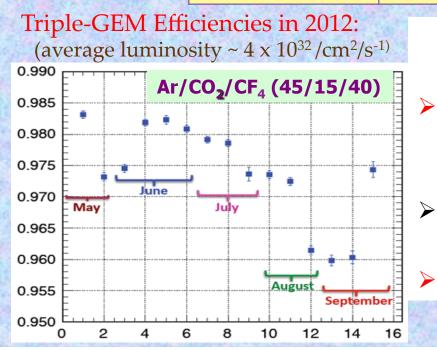



CMS Muon System: Muon Endcap GEM Upgrade (GE 1/1)

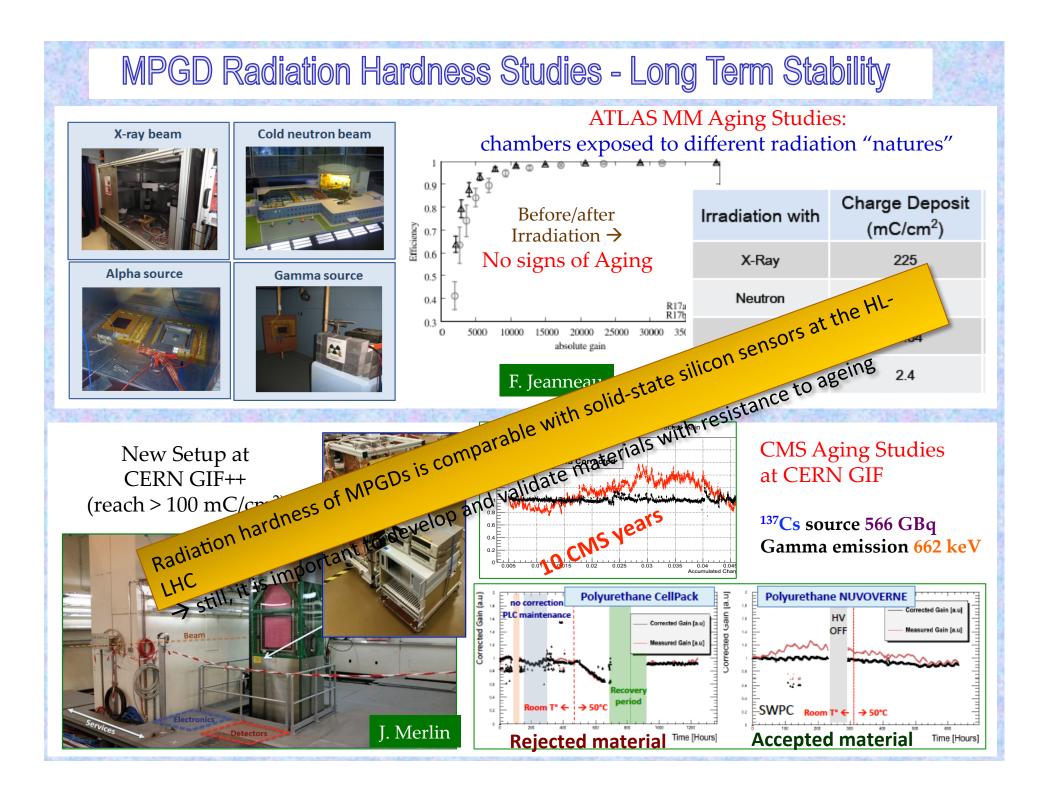



- Restore redundancy in muon system for robust tracking and triggering
- Ensure ~ 100% trigger efficiency in high PU environment in Run III
- Install trapezoidal 3-GEM detectors in 1.5<|η|<2.2 endcap region:
- 2 GEM chambers form a "**super chamber (SC)**";
- **144 total chambers** (36 super chambers in one station per endcap)

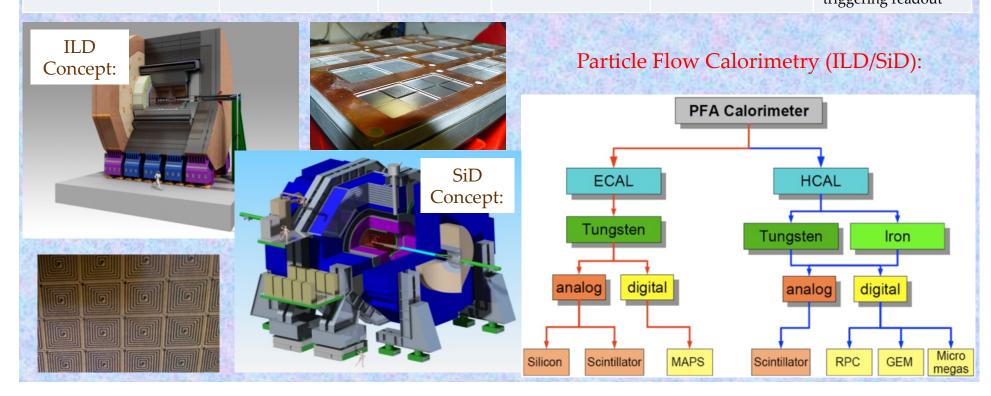

Approved by CERN LHCC: TDR and Project Implementation Plan



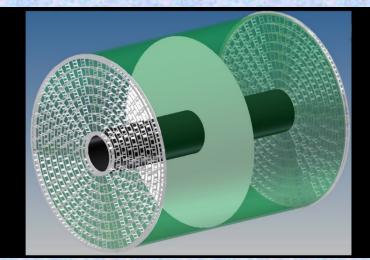
LHCb GEM Muon System Performance and Radiation Hardness								
and The Anna	A18A2L: 18 mC/cm ²	A18A1L: 34 mC/cm ²	C18A1L: 31 mC/cm ²	C18A2L: 13 mC/cm ²				
Integrated charges in 2012:	A18A2R: 12 mC/cm ²	A18A1R: 23 mC/cm ² C18A1R: 17 mC/cm ²		C18A2R: 21 mC/cm ²				
	A17A2L: 50 mC/cm ²		C17A2L: 42 mC/cm ²					
	A17A2R: 59 mC/cm ²	Beam	C17A2R: 60 mC/cm ²					
	A16A2L: 35 mC/cm ²	Deam	C16A2L: n/a					
	A16A2R: 35 mC/cm ²		C16A2R: 35 mC/cm ²					
	A15A2L: 30 mC/cm ²	A15A1L: 33 mC/cm ²	C15A1L: 33 mC/cm ²	C15A2L: 34 mC/cm ²				
	A15A2R: 29 mC/cm ²	A15A1R: 36 mC/cm ²	C15A1R: 41 mC/cm ²	C15A2R: 18 mC/cm ²				



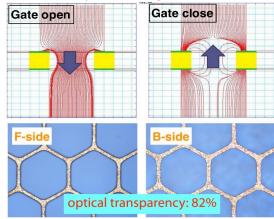
_Integrated Luminosity 2012 ~1.5 /fb^{-1:}


- 120 mC/cm² total integrated charge (average) (2010 + 2011 + 2012 data taking periods)
- ➢ 60 mC/cm² in 2012 (max) until Oct. 2012

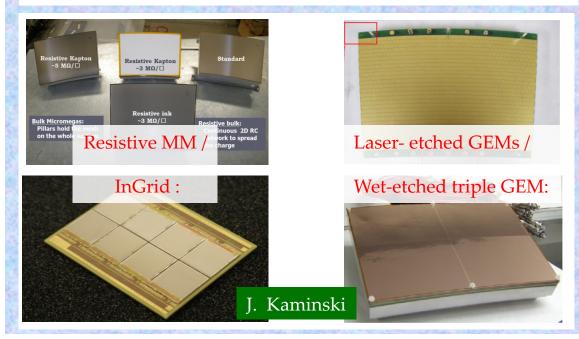
➢ No indications of "classical" aging

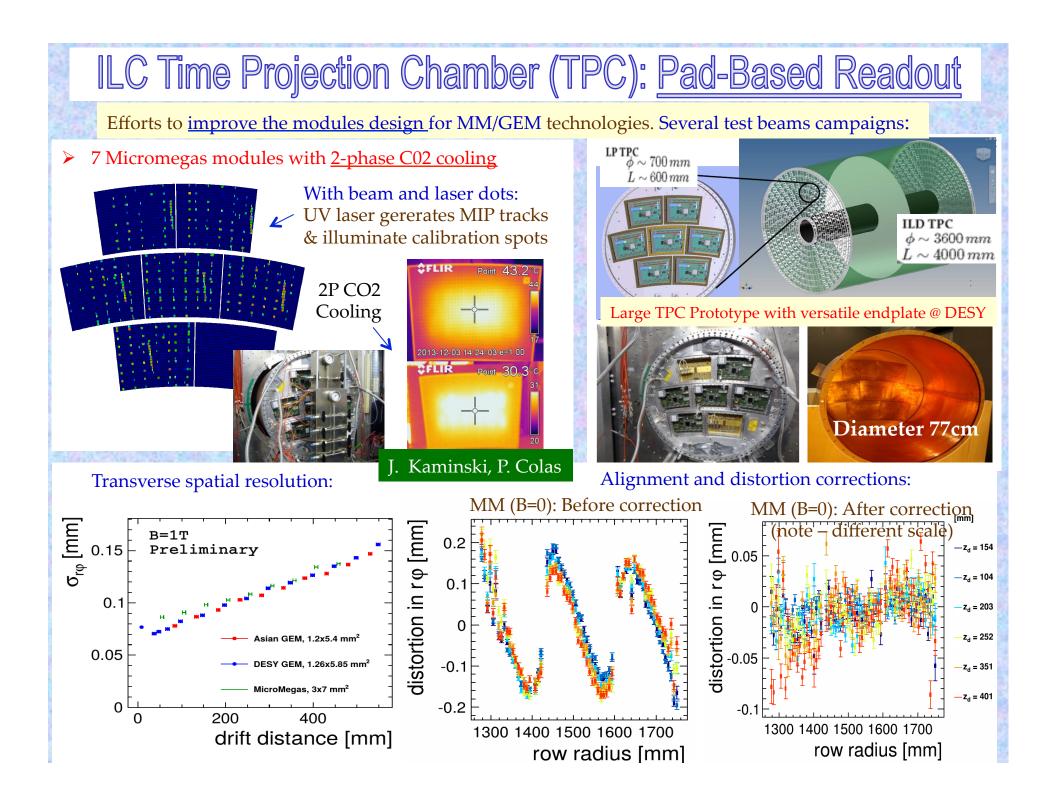

G. Bencivenni, A. Cardini

MPGD Technologies for the International Linear Collider						
Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks	
ILC Time Projection Chamber for ILD: Start: > 2030	High Energy Physics (tracking)	Micromegas GEM (pads) InGrid (pixels)	Total area: ~ 20 m ² Single unit detect: ~ 400 cm ² (pads) ~ 130 cm ² (pixels)	Max. rate: < 1 kHz Spatial res.: <150μm Time res.: ~ 15 ns dE/dx: 5 % (Fe55) Rad. Hard.: no	Si + TPC Momentum resolution : dp/p < 9*10- ⁵ 1/GeV Power-pulsing	
ILC Hadronic (DHCAL) Calorimetry for ILD/SiD Start > 2030	High Energy Physics (calorimetry)	GEM, THGEM RPWELL, Micromegas	Total area: ~ 4000 m ² Single unit detect: 0.5 - 1 m ²	Max.rate:1 kHz/cm ² Spatial res.: ~ 1cm Time res.: ~ 300 ns Rad. Hard.: no	Jet Energy resolution: 3-4 % Power-pulsing, self- triggering readout	



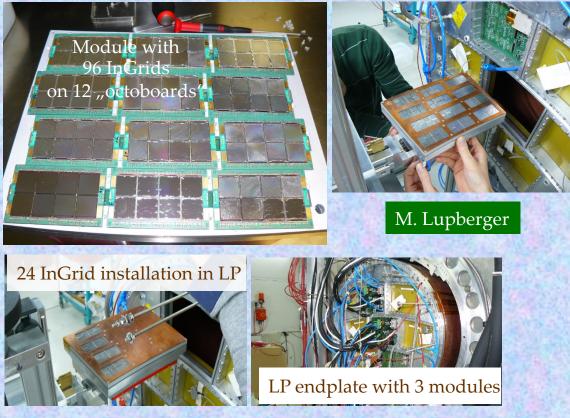
ILC Time Projection Chamber (TPC): MPGD-Based Readout

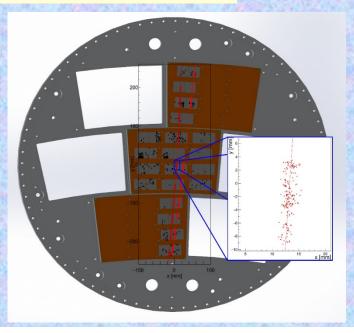

Primary ions create distortions in the electric field \rightarrow O(10µm) track distortions


- Machine-induced bkg. and ions from gas amplification → track distortions 60 µm
 => Gating is needed
- Wire gate is an option
- Alternatively: GEM-gate

MPGDs are foreseen as TPC readout for ILC (endcap size~10 m²):

- Standard "pad readout" (1x 6 mm²): 8 rows of det. modules (17×23 cm2); 240 modules per endcap
- Wet-etched triple GEMs
- Laser-etched double-GEMs 100µm thick ("Asian")
- Resistive MM with dispersive anode
- "Pixel readout" (55x 55µm²): ~100-120 chips per module → 25000-30000 per endcap
- ➢ GEM + pixel readout
- InGrid (integrated Micromegas grid with pixel readout)

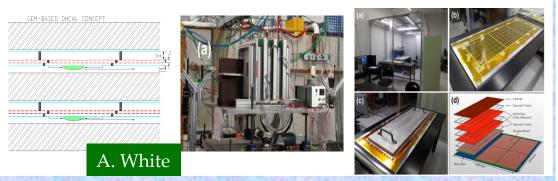

ILC Time Projection Chamber (TPC): Pixel-Based Readout


BREAKTHROUGH: feasibility shown in test-beam with 160 InGrids detectors

3 modules for LCTPC large prototype : 1 x 96 InGrid, 2 x 24 InGrids 320 cm² active area, 10,5 mio. channels, new readout system-Readout 5 SRS FECs

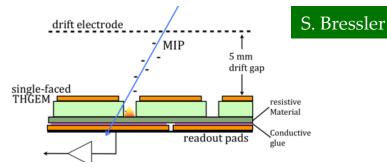
By design:

- Single electron detection
- Time-of-arrival measurement
- High granularity; Uniform gas gain

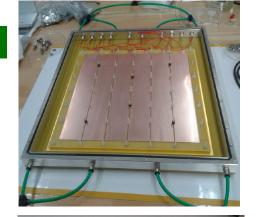

50 cm track length with about 3000 hits

- → each representing an electron from the primary ionisation.
- → demanding for track reconstruction, especially in case of curved tracks
- Physics properties of the TPC
- \rightarrow field distortions; reliability
- \rightarrow dE/dx resolution;delta identification
- \rightarrow single point resolution
- → momentum measurement
- \rightarrow Track angular effect

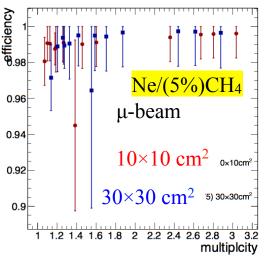
ILC DHCAL Particle Flow Calorimetry: GEM/ THGEM / RPWELL


GEM for DHCAL:

- Series of double GEM chambers built
- Large scale (1m x 33cm) layers under construction (subject to funding)

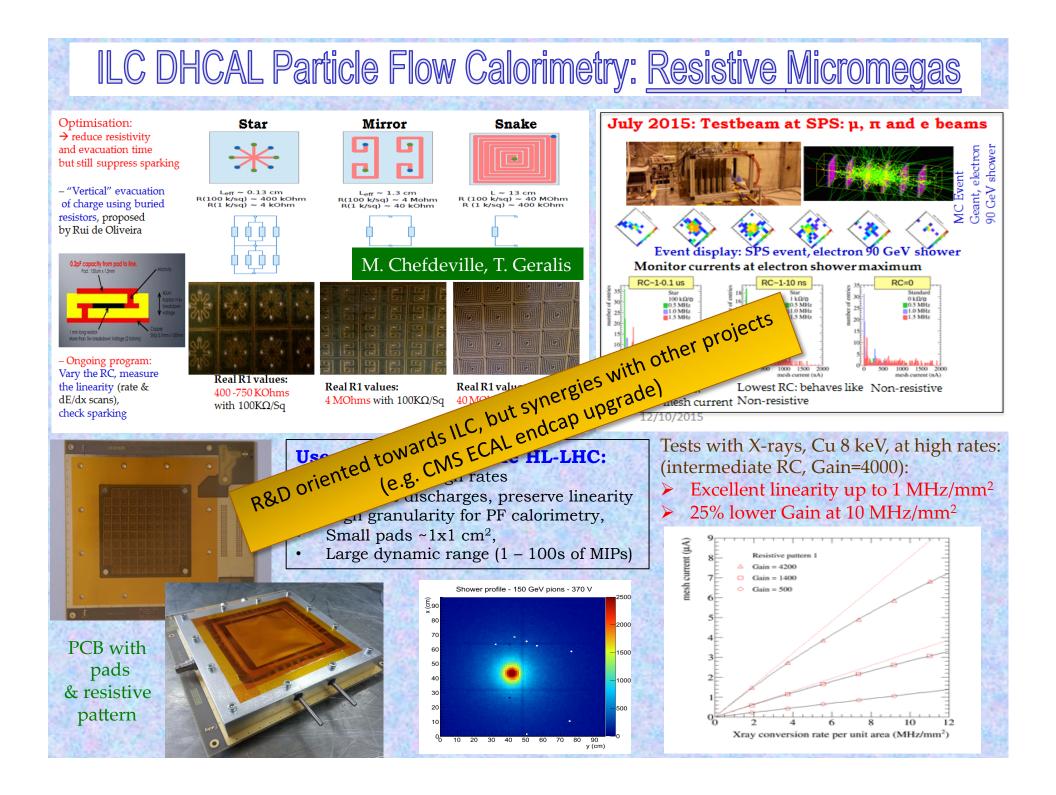

RPWELL for DHCAL: A Novel Architecture Small (10x10 cm²) & medium (30x30cm²) prototypes:

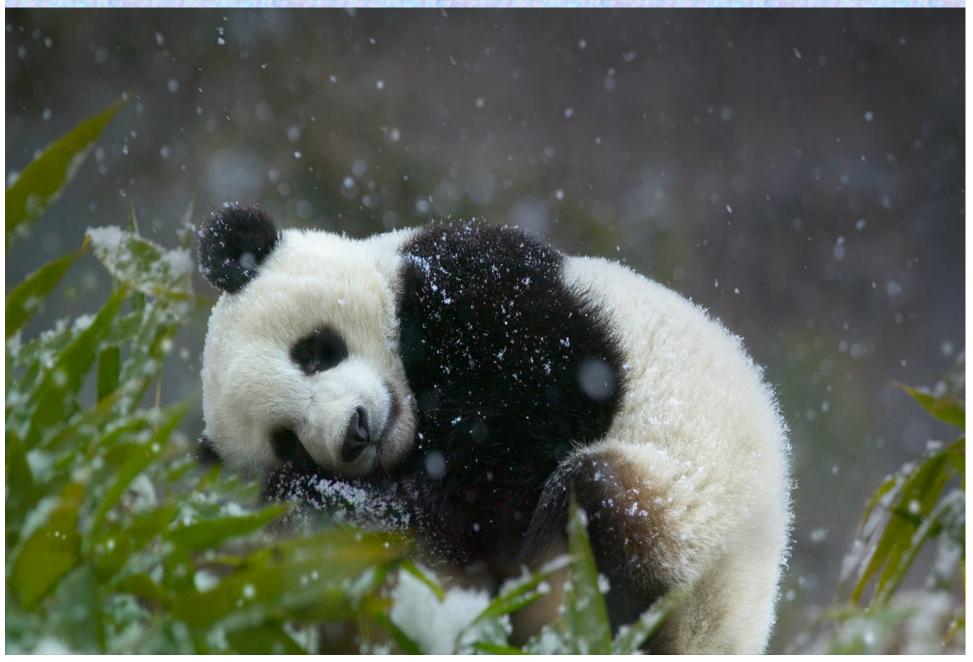
supported by the RD51 Common fund



Common features with GEM/MM:

- □ from GEM it takes the amplifying scheme with the peculiarity of a "well defined amplifying gap" → ensuring very high gain uniformity.
- ☐ from Micromegas it takes the resistive readout scheme → strong suppression of the discharges.





THGEM-based RPWELL:

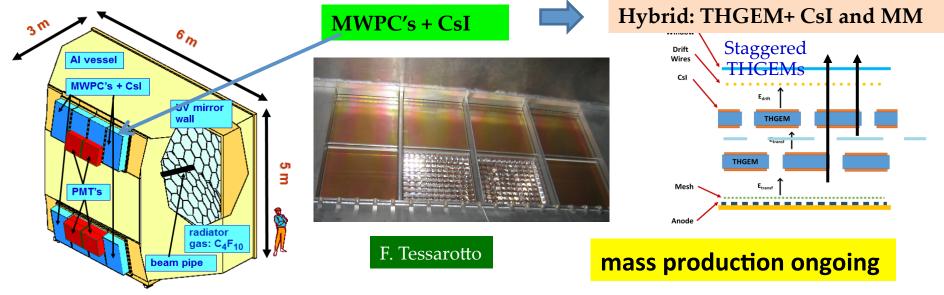
- Robust again discharges
- Stiff support structure
- Potential to be extended to very large areas

... If you are not sleeping yet ...

MPGD Technologies for Photon Detection						
Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks	
COMPASS RICH UPGRADE Start > 2016	Hadron Physics (RICH - detection of single VUV photons)	Hybrid (THGEM + CsI and MM)	Total area: ~ 1.4 m^2 Single unit detect: ~ $0.6 \times 0.6 \text{ m}^2$	Max.rate:100 Hz/cm ² Spatial res.: <~ 2.5 mm Time res.: ~ 10 ns	Production of large area THGEM of sufficient quality	
PHENIX HBD Run: 2009-2010	Nuclear Physics (RICH – e/h separation)	GEM+CsI detectors	Total area: ~ 1.2 m ² Single unit detect: ~ 0.3 x 0.3 m ²	Max. rate : low Spatial res.: ~ 5 mm (rφ) Single el. eff.: ~ 90 %	Single el. eff. depends from hadron rejection factor	
SPHENIX Run: 2021-2023	Heavy Ions Physics (tracking)	TPC w/GEM readout	Total area: ~ 3 m ²	Multiplicity : dNch/dy ~ 600 Spatial res.: ~ 100 um (rφ)	Runs with Heavy Ions and comparison to pp operation	
Electron-Ion Collider (EIC) Start: > 2025	Hadron Physics (tracking, RICH)	TPC w/GEM readout	Total area: ~ 3 m ²	Spatial res.: ~ 100 um ($r\phi$) Luminosity (e-p): 10 ³³	Low material budget	
Start. > 2023		Large area GEM planar tracking detectors	Total area: ~ 25 m ²	Spatial res.: ~ 50- 100 um Max. rate : ~ MHz/cm ²	Low material budget	
		RICH with GEM readout	Total area: ~ 10 m ²	Spatial res.: ~ few mm	High single electron efficiency	
	4	10 15 30 25			Primary ionization Csl	

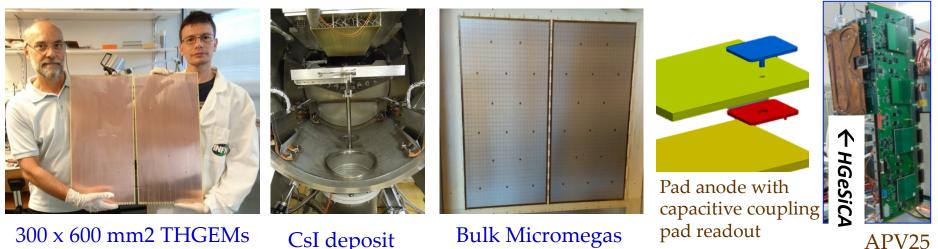
5

ALICE VHPID THGEM


1.

GEM

HBD Concept:

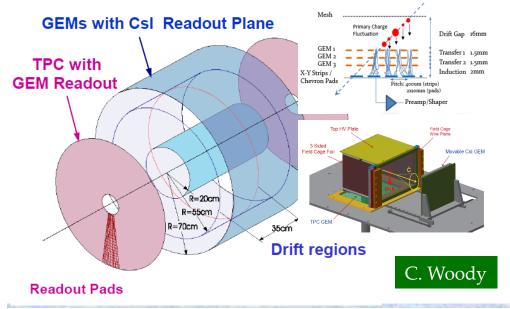

COMPASS RICH | Upgrade for 2016 Run ||

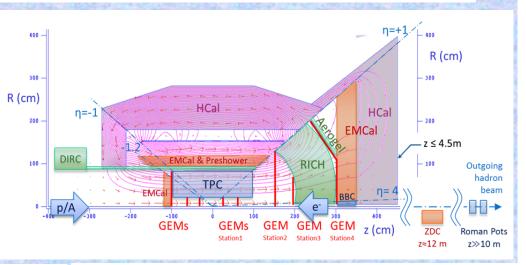
◆ <u>COMPASS RICH I:</u> 8 MWPC with CsI (RD26 @ CERN) since 2000

After a long-term fight for increasing electrical stability at high rates: MWPC robust operation is not possible at gain~10⁵ because of photon feedback, space charge & sparks

PMTs not adequate \rightarrow only small demagnification factor allowed; 5 m² of PMTs not affordable.

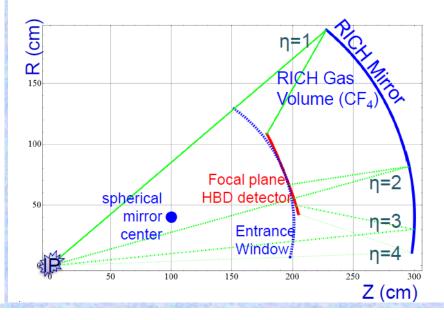
300 x 600 mm2 THGEMs

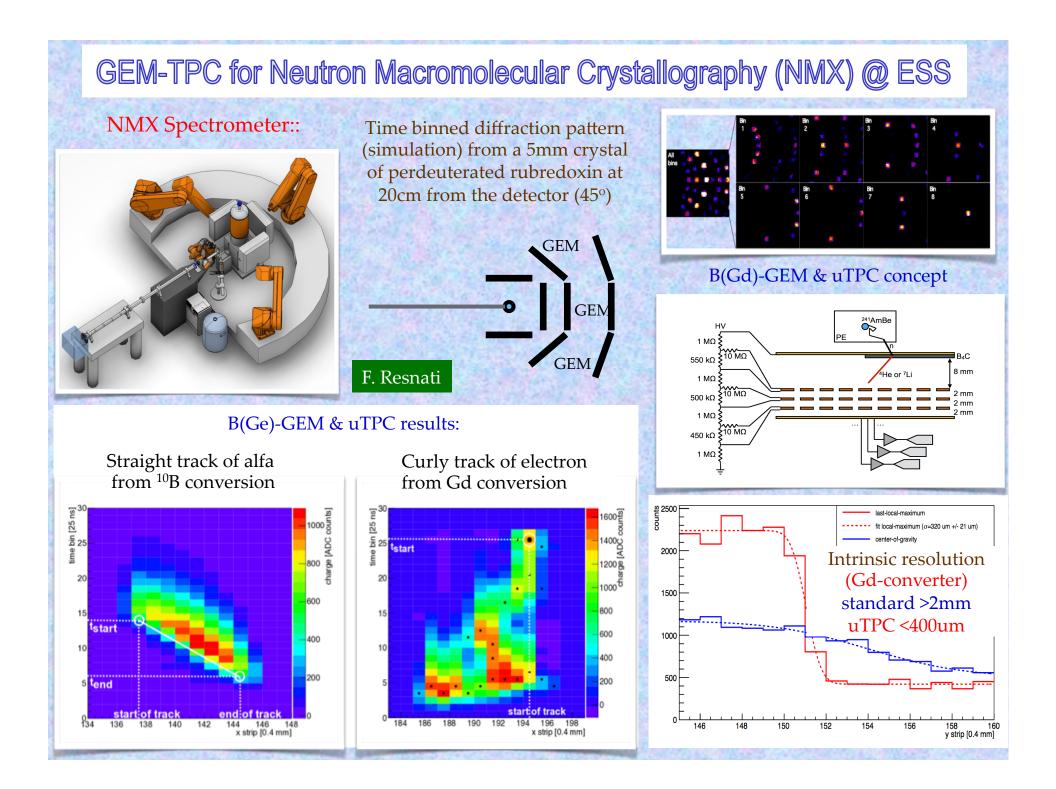

CsI deposit

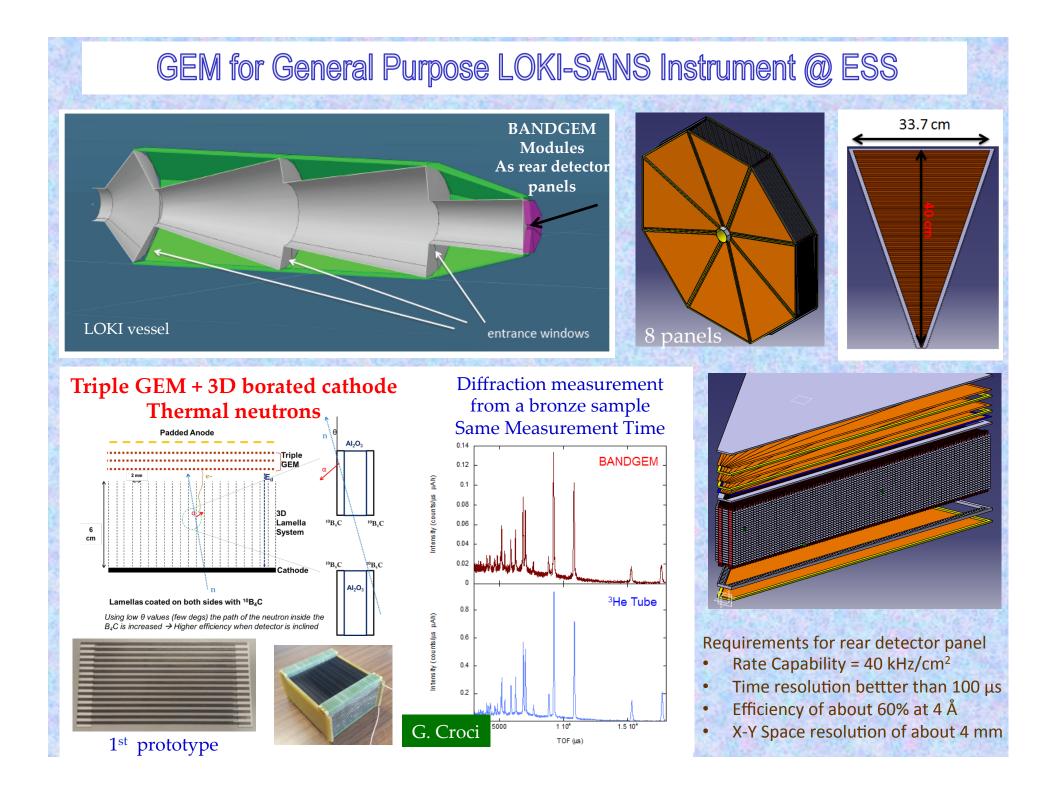

GEM Tracking for PHENIX Upgrade and Electron-Ion Collider

sPHENIX \rightarrow eRHIC Detector

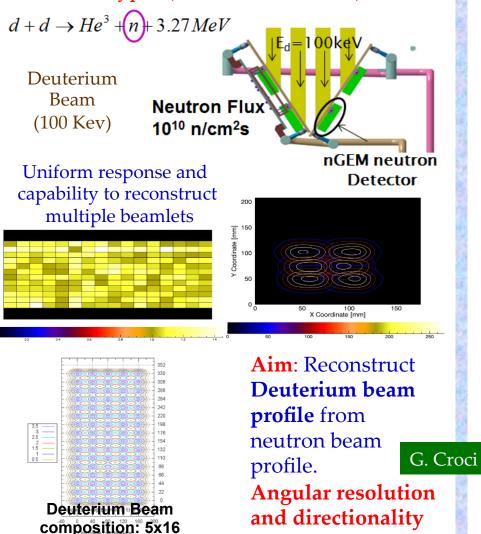
- -1<η<+1 (barrel) : sPHENIX + Compact-TPC + DIRC
- -4<η<-1 (e-going) : EM calorimeter + GEM trackers
- +1<η<+4 (h-going) :</p>
 - 1<η<4 : GEM tracker + Gas RICH


Developing short drift mini-TPC with GEMs (to improve resolution at larger angles) with Cherenkov Particle ID (use Cherenkov light produced in the *same* gas volume to identify electrons)




Focusing RICH for EIC:

→ Developing <u>a Ring Imaging version of</u> <u>the HBD</u> using dual radiators for particle ID


	Xray Low energy Tokamak diagnostics Radioactive waste Pixelated GEM Microdosimetry Tissue Equivalent chamber et measurements with real tissue Radon Monitor	MPGI	GD-base D coupled to n R / Spallation		Detectors
High Intensity Beam Monitors Hadrotherapy Ions Beam Monitor		> Neutron-beam diagnostics			
Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size)	Operation Characteristics / Performance	Special Requirements / Remarks
ESS NMX: Neutron Macromolecular Crystallography Start: > 2020(for 10 y.)	Neutron scattering Macromolecular Crystallography	GEM w/ Gd converter	Total area: ~ 1 m ² Single unit detect: 60x60 cm ²	Max.rate: 100 kHz/mm ² Spatial res.: ~500μm Time res.: ~ 10 us neff: ~ 20% efficient - γ rejection of 100	Localise the secondary particle from neutron conversion in Gd with < 500um precision
ESS LOKI- SANS: Small Angle Neutron Scattering (Low Q) Start: > 2020(for 10 y.)	Neutron scattering: Small Angle	GEM w/ borated cathode	Total area: ~ 1 m ² Single unit detect: 33x40 cm ² trapezoid	Max.rate: 40 kHz/mm ² Spatial res.: ~4 mm Time res.: ~ 100 us n. –eff. >60% (at λ = 4 Å) - γ rejection of 10^-7	Measure TOF of neutron interaction in a 3D borated cathode
SPIDER: ITER NBI PROTOTYPE Start: ~ 2017(for 10 y.)	CNESM diagnostic: Characterization of neutral deuterium beam for ITER plasma heating using neutron emission	GEMs w/ Al-converter (Directionality - angular) capability)	Single unit detect: 20x35 cm ²	Max.rate : 100 kHz/mm ² Spatial res.: ~ 10 mm Time res.: ~ 10 ms neff: >10^-5 γ rejection of 10^-7	Measurement of the n- emission intensity and composition to correct deuterium beam parameters
n_TOF beam monitoring/ beam profiler Run: 2008-now	Neutron Beam Monitors	MicroMegas µbulk and GEM w/ converters	Total area: ~ 100cm ²	Max.rate :10 kHz Spatial res.: .: ~300μm Time res.: ~ 5 ns Rad. Hard.: no	

Fast Neutron Beam Monitors for ITER and Spallation Source ISIS (UK)

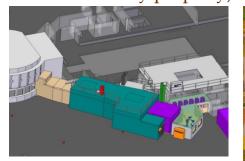
CNSEM (Close Contact Neutron Surface Emission Mapping) diagnostic for **ITER** NBI Prototypes (SPIDER & MITICA)

beamlets (40 x 20 mm²)

property needed

Beam monitor for **ChipIr** @ ISIS and **ESS**

7 p

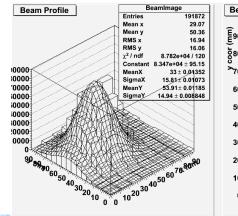

gas

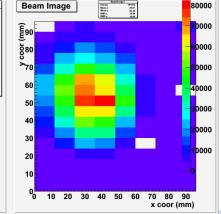
Al

Fast neutron Converters:

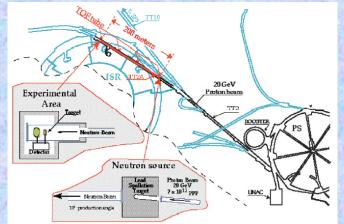
Polyethylene

 Al-layer (give CH₂ directionality property)



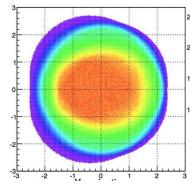


ChipIr CAD model at ISIS-TS2


ESS Model

Aim: Construct large area, real-time and high rate beam monitors for fast neutron lines

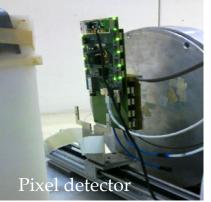
Beam Monitoring at nTOF @ CERN

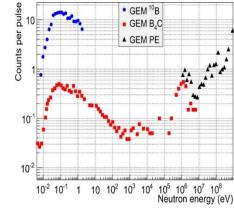

Neutron beam + state-of-the-art detectors make n_TOF UNIQUE for: - Measuring radioactive isotopes

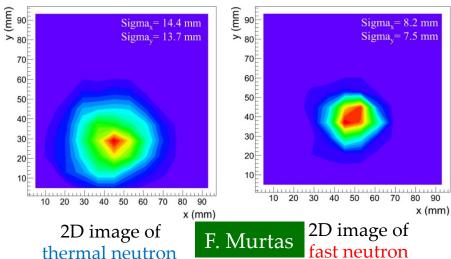
- Identifying/studying resonances (at energies higher than before)
- Extending **energy range** for fission (up to 1 GeV !)

The energy of the neutrons can be determined from their Time of Flight

Installation on NTOF Beam profile at detector






4 pad detector μMegas detector: 2 D reconstructed image T. Papaevangelou

 μM Neutron Monitor applied to fission reactor

GEM detector

MPGD-based Neutron /Photon Detection: RD51 Academia – Industry Matching Events

Platform: Research + industry + potential users to foster collaboration on dedicated applications

Academia-Industry Matching Event Special Workshop on Neutron Detection with MPGDs

CERN

14-15 October 2013 Neutron Detection 1st

Academia-Industry Matching Event Second Special Workshop on Neutron Detection with MPGDs

16-17 March 2015 Neutron Detection 2nd

Event Description Dear Colleagues, In continuity with the first Acc (Micro-Pattern Gas organise the Second Accademia-Tr Parcic Iparic Lisc How to get CERN Date: 16-17 march 20 Location : CERN Addicional informacio This event provides : 19th RDS1 Collag neutron detectio Organis ing Commits

CERN

The Neutron Scatter will be also the case fo the HEP community strongly encourage yo part to the discussion presentation does not c hallenges (for evenu Short presentation (s are we with the 3He We would appreciate Please send us your a present somes results The detailed program You can see the prese and a summary is ava

Starts 16 Mar 1 Ends 17 Mar 20 0

16-17 March 2015 with MPGDs (Micro-Patter

is), held at CERN on March 16⁸ - 17⁴, 2015, brought together prominent es of the particle physics community as well as already established and relatively The aim of the event was to help disseminating MPGD technologies beyond fund

physics, where academic institutions, potential users and industry could meet together

The shortage of Helium-3 in the world brings new challenges to restron detection, especially in the areas of home-land security, non-problemation, neutron scattering science and other fields. Micro-Pattern Gas Detectors offer attractive alternative solutions for neutron detection, complementing Helium 3 based proportional counters. The event provided a platform for discussion of the prospects of the MFOD use for thermal and fast neutron detection, commercial-requirements and possible solutions. was organised jointly by

v-up of a similar event that took place in October, 2013. "Ou operation with HEPTech has ready a long history", says Dr rearly's long history', says Dr. Iaxim Thov fram CEA aclay/lifu, co-spokesperson of ac RD51 Collaboration, together th Letzek Ropelewski from

RD51 is a technology based collaboration which addresses the technological developm Micro-pattern gas detecturs. MPGDs are not only used in LHC experiments but also in numerous applications outside the high energy physics. The RD51 was created in 2008 and in 2013 it was approved for another 5-year tann. The organization of such academia-industry JJ 5 if we approved it is mother 5-year term. The organization of such exidemin-multity matching events (AIMEz), disseminating MPGD applications beyond fundamental physics, was one of the major new activities when the continuation of the KD51 programme was discussed "As a baypoint of being a technological collaboration, for us it was very important. mehow to link our collaboration to potential users and industrial companies that might be

https://indico.cern.ch/event/365840/ Press release

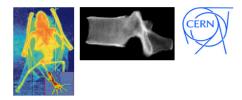
HEPTech List of Recommended 10-11 June 2015 collaporation with HEPTe Organising Committee oles beyond fundamenta of the MPGD technologies for the field. This event is jointh to hierwork and CERN KT Group. It is open to issted or working in the field of proton detection. e 2015 nell Charn ber, CERN In 385 1217 Meyel

Photon Detection

RD51 Academia-Industry Matching Event

1D-11 June 2015 CERN

Event Description


Decalled agenda

Parcic loand Lise

Lien RDSLCo Heeting

total to det CERN

Special Workshop on Photon Detection with MPGDs

https://indico.cern.ch/event/392833/ (understanding requirements, applications, approaching new communities and technologies)

applications. Two large-scale neutron facilities, SNS in the US and J-PARC in Japan, have recently

started their operation, and the future ESS (European Spallation Source) will produce first neutrons in

2019-2020. Detectors with better performance are urgently needed to take full benefit of the high

itensity neutron beams produced by these sources. An additional constraint comes from the fact that

the volume of⁴He available is by far insufficient to cope with the demand for large area detectors, and

Compared to Multi Wires Proportional Chambers (MWPC), Micro-Pattern Gas Detectors (MPGD) used HEP to detect MIPs offer better spatial resolution, counting rate capability, and radiation hardness their fabrication is also more reproducible. Provided similar advantages are applicable to detect

neutrons. MPGDs might contribute significantly to the development of neutron scientific

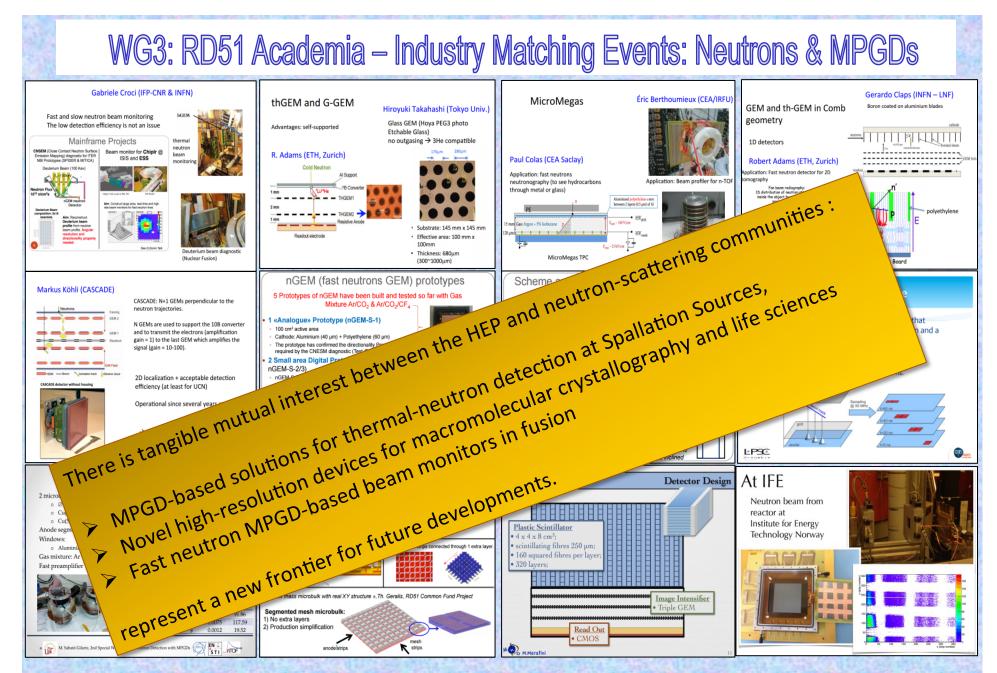
instrumentation. In order to evaluate the prospects of neutron MPGDs, it is worth knowing the

applications which would benefit from a gain in performance, and if they offer a competitive alternative

Detection with Micro-Pattern Gaseous Detectors" organized by RD61 in collaboration with HEPTech. which took place at CERN on October 14-15, 2013. The goal of this workshop was to help

disseminating MPGD technologies beyond High Energy Physics, and to give the possibility t

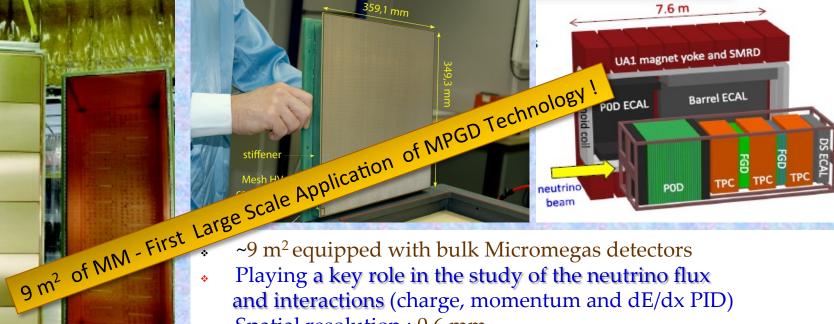
academic institutions, potential users and industry to meet together. 26 speakers gave press


conventional ^aHe detectors. These questions have been at the focus of the workshop "Neutron

the cost of this gas has increased considerably.

on the following topic

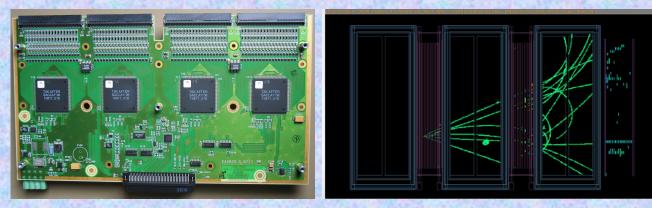
https://indico.cern.ch/event/265187/


A large Community - Strong interaction with RD51 Use of MPGD Detector R&D, tools and electronics (RD51 SRS & ATLAS NSW VMM)

MPGD Technologies for Neutrino Physics						
Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks	
T2K @ Japan Start: 2009 - now	Neutrino physics (Tracking)	TPC w/ Micromegas	Total area: ~ 9 m ² Single unit detect: 0.36x0.34m ² ~0.1m ²	Spatial res.: 0.6 mm dE/dx: 7.8% (MIP) Rad. Hard.: no Moment. res.:9% at 1 GeV	The first large TPC using MPGD	
SHiP @ CERN Start: 2025-2035	Tau Neutrino Physics (Tracking)	Micromegas, GEM, mRWELL	Total area: ~ 26 m ² Single unit detect: $2 \times 1 \text{ m}^2 \text{ ~ } 2\text{m}^2$	Max. rate : < low Spatial res.: < 150 μm Rad. Hard.: no	Provide time stamp of the neutrino interaction in brick"	
LBNO-DEMO (WA105 @ CERN): Start: > 2016	Neutrino physics (Tracking+ Calorimetry)	LAr TPC w/ THGEM double phase readout	Total area: 3 m ² (WA105-3x1x1) 36 m ² (WA105-6x6x6) Single unit detect. (0.5x0.5 m2) ~0.25 m ²	WA105 3x1x1 and 6x6x6: Max. rate : 150 Hz/m ² Spatial res.: 1 mm Time res.: ~ 10 ns Rad. Hard.: no	Detector is above ground (max. rate is determined by muon flux for calibration)	
DUNE Dual Phase Far Detector Start: > 2023?		LAr TPC w/ THGEM double phase readout	Total area: 720 m ² Single unit detect. (0.5x0.5 m2) ~ 0.25 m ²	Max. rate: 4*10 ⁻⁷ Hz/m ² Spatial res.: 1 mm Rad. Hard.: no	Detector is underground (rate is neutrino flux)	

Three Large TPC for the T2K Near Detector

The T2K TPCs: the **FIRST** and the **LARGEST** TPCs equipped with MPGDs (Micromegas)



~9 m² equipped with bulk Micromegas detectors

- Playing a key role in the study of the neutrino flux and interactions (charge, momentum and dE/dx PID)
- Spatial resolution : 0.6 mm \diamond
- Momentum res.: 9% at 1 GeV (reconstruct v-energy spectrum) \diamond
- dE/dx: 7.8 % (for MIPs to ditinguish μ/e , measure ve component) ÷

72 Micromegas and 120k channels functioning flawlessly since 2009 (dead channels 144/124272)

M. Zito

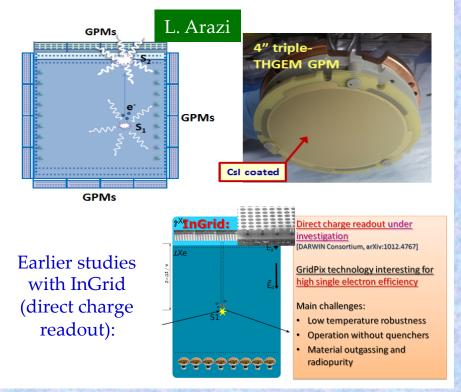
Electronic Target Tracker for Tau-Neutrino Detector at SHIP Facility @ CERN **Electronic Target Tracker Layout:** Present SHIP Facility: \rightarrow 12 planes with 2x1 m² surface Hidden particle > 2013: originally designed to study HNL in vMSM decay volume Muon spectrometer Today: B = 1.5 T Search for wide range of weakly ELECTRONIC interacting exotic particles (incl. SUSY) COMPACT EMULSION SPECTROMETER ECC BRICK Spectrometer - Study physics of v_{τ} produced in D_S decays Particle ID rohacell Muon id Momentum lead charge Muon sweeper Tau neutrino detector emulsion lavers œΒ Passive mater al as neutrino target Extension of SHIP Facility: Nuclear emulsions as µm accuracy trackers: τ production and decay vertices Target / hadron Direct Dark Matter Searches (downstream SHIP) absorber Electronic trackers to provide the "time stamp" and match emulsion tracks > LFV Experiment $\tau \rightarrow 3\mu$ (dedicated detector) measure the charge of τ daughters when magnetized

Target Tracker Requirements:

- Maximum thickness of the plane is 5-6 cm
- Capability of measuring the angle in each plane (efficiency versus the track angle: up to tg(θ) = 1)
- Performance in magnetic field (RD51 is currently using GOLIATH magnet in the test-beam area);

- Provide time stamp of the neutrino interaction in the brick
- Matching between the electronic detectors and the emulsion tracker

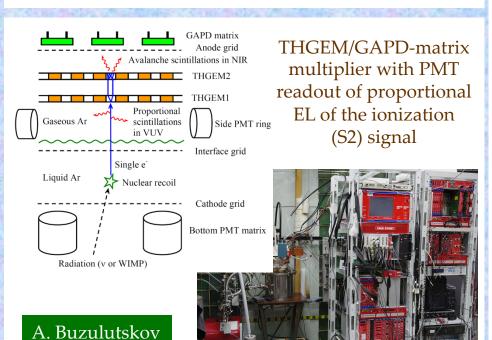
Four possible technologies:

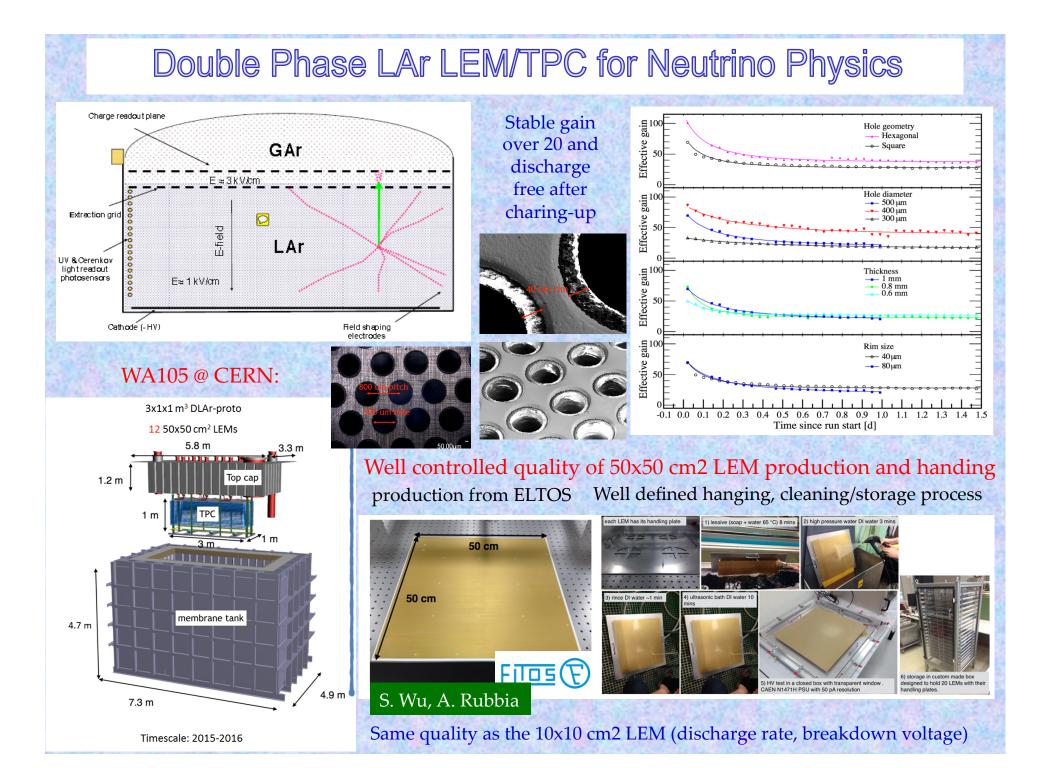

- Scintillating fiber trackers (250 µm Scintillating fibres readout by SiPMs)
- GEM tracker
- Micromegas tracker
- Resistive RPWELL detector

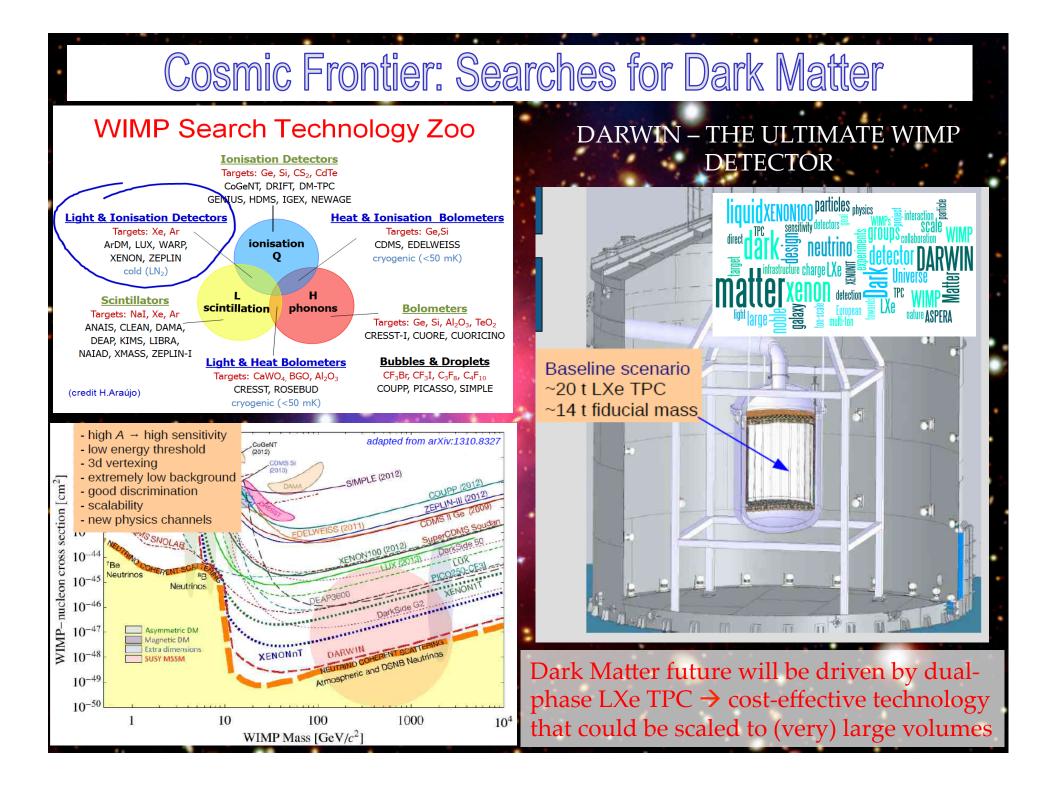
The Cryogenic Frontier: MPGDs for Neutrino Physics and Dark Matter Searches

Concept: Detector of nuclear recoils of ultimate sensitivity for Coherent Neutrino-Nucleus Scattering and Dark Matter Search experiments

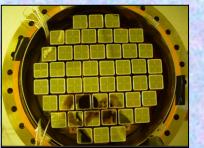
GPMs LXe TPCs for dark matter searches (within DARWIN):

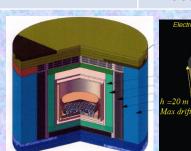

- Aim for 4π coverage not practical with PMTs (cost, bulkiness) or SiPMs (dark count rate)
- Demonstration of 4" cryogenic triple-THGEM GPM with reflective CsI coupled to dual phase LXe TPC:

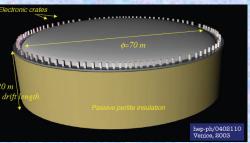



Two ideas for future large-scale MPGD-based noble-liquid detectors:

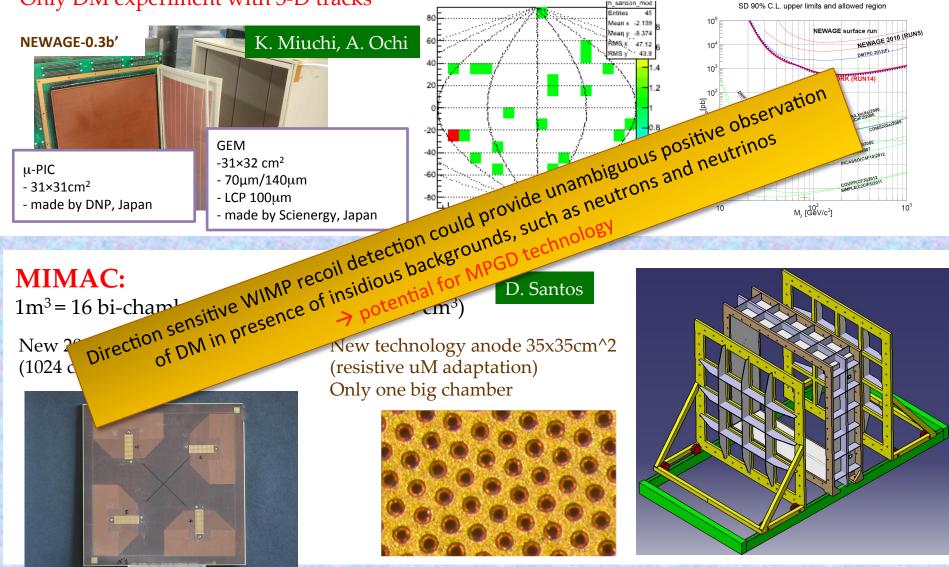
- Dual-phase TPCs with cryogenic large-area gaseous photomultipliers (GPMs)
- Single-phase TPCs with MPGDs immersed in the noble liquid.


Challenge: Single electron sensitivity to nuclear recoilinduced ionization – optimization to achieve simultaneously high gas gain and long-term stability





MPGD Technologies for Dark Matter Detection								
Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks			
DARWIN (multi-ton dual-phase LXe TPC) Start: >2020s	Dark Matter Detection	THGEM-based GPMT	Total area: $\sim 30m^2$ Single unit detect. $\sim 20 \text{ x} 20 \text{ cm}^2$	Max.rate: 100 Hz/cm ² Spatial res.: ~ 1cm Time res.: ~ few ns Rad. Hard.: no	Operation at ~180K, radiopure materials, dark count rate ~1 Hz/cm ²			
PANDA-X @ China Start: > 2017	Astroparticle physics Neutrinoless double beta decay	TPC w/ Micromegas µbulk	Total area: 1.5 m ²	Energy Res.: ~ 1-3% @ 2 MeV Spatial res.: ~ 1 mm	High radiopurity High-pressure (10b Xe)			
NEWAGE@ Kamioka Run: 2004-now	Dark Matter Detection	TPC w/ GEM + μ PIC	Single unit det. ~ 30x30x41(cm ³)	Angular resolution: 40° @ 50keV				
CAST @ CERN: Run: 2002-now	AstroParticle Physics: Axions, Dark Energy/ Matter, Chameleons detection	Micromegas µbulk and InGrid (coupled to X- ray focusing device)	Total area: 3 MM µbulks of 7x 7cm ² Total area: 1 InGrid of 2cm ²	Spatial res.: ~100μm Energy Res: 14% (FWHM) @ 6keV Low bkg. levels (2-7 keV): μMM: 10-6 cts s-1keV-1cm-2 InGrid: 10-5 cts s-1keV-1cm-2	High radiopurity, good separation of tracklike bkg. from X-rays			
IAXO Start: > 2023 ?	AstroParticle Physics: Axions, Dark Energy/ Matter, Chameleons detection	Micromegas µbulk, CCD, InGrid (+ X- ray focusing device)	Total area: 8 μbulks of 7 x 7cm2	Energy Res: 12% (FWHM) @ 6keV Low bkg. Levels (1-7 keV): µbulk: 10-7cts s-1keV-1cm-2	High radiopurity, good separation of tracklike bkg. from X-rays			

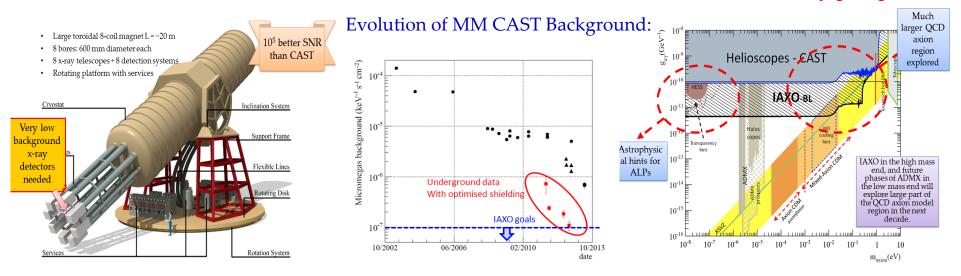

Direction Sensitive Dark Matter Searches: MIMAC and NEWAGE

NEWAGE:

μ-PIC based TPC with electronics Only DM experiment with 3-D tracks

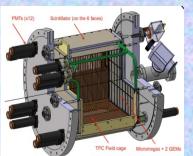
SKYMAP (underground measurement, F recoil)

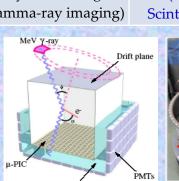
LIMIT (PTEP2015) the only result from direction-sensitive method

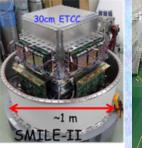


MPGDs Technology for Dark Matter Searches at CAST and IAXO 1 Micromegas CAST Axion Telescope @ CERN: + 1 Ingrid X-ray detectors (+ x-ray focusing Phase II: inserting gas (⁴He, ³He) inside 2 Micromegas optics) X-ray detectors the magnet bores to gain sensitivity to high axion masses LHC test magnet X-ray optic 9 T. 10 m Platform to track the B field I. Irastorza Sun (±8°V ±40°H) 3 h/day) E. Ferrer Ribas

MPGD Detectors: Microbulk Micromegas (radiopurity, excellent background rejection) InGrid (since Nov. 2014, X-ray detection down to 277 eV → First use of InGrid in the real experiment

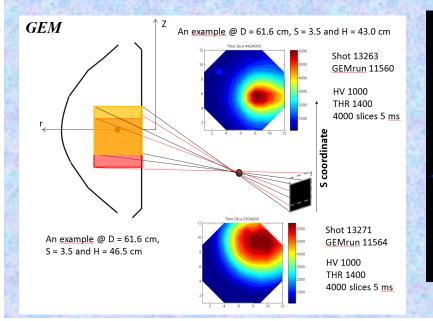

The International Axion Observatory (IAXO):


IAXO sensitivity prospects

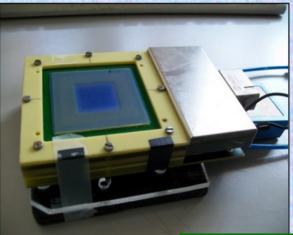

MPGD Technologies for <u>X-Ray Detection and γ-Ray Polarimetry</u>

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation characteristics / Performance	Special Requirements/ Remarks
KSTAR @ Korea Start: 2013	Xray Plasma Monitor for Tokamak	GEM GEMPIX	Total area: 100 cm ² Total area: 10-20 cm ²	Spat. res.: ~ 8x8 mm^2 2 ms frames; 500 frames/sec Spat. res.: ~50x50 μm^2 1 ms frames;5 frames/sec	
PRAXyS Future Satellite Mission (US-Japan): Start 2020 - for 2years	Astrophysics (X-ray polarimeter for relativistic astrophysical X-rays	TPC w/ GEM	Total area: 400 cm ³ Single unit detect. (8 x 50cm ³) ~400cm ³	Max.rate: ~ 1 lcps Spatial res.: ~ 100 um Time res.: ~ few ns Rad. Hard.: 1000 krad	Reliability for space mission under severe thermal and vibration conditions
HARPO Balloon start >2017?	Astroparticle physics Gamma-ray polarimetry (Tracking/Triggering)	Micromegas + GEM	Total area: 30x30cm2 (1 cubic TPC module) Future: 4x4x4 = 64 HARPO size mod.	Max.rate: ~ 20 kHz Spatial res.: < 500 um Time res.: ~ 30 ns samp.	AGET development for balloon & self triggered
SMILE-II: Run: 2013-now	Astro Physics (Gamma-ray imaging)	GEM+ μ PIC (TPC+ Scintillators)	Total area: 30 x 30 x 30 cm ³	Point Spread Function for gamma-ray: 1°	
ETCC camera Run: 2012-2014	Environmental gamma- ray monitoring (Gamma-ray imaging)	GEM+ μ PIC (TPC+ Scintillators)	Total area: 10x10x10 cm ³	Point Spread Function for gamma-ray: 1°	

Scintillator


GEM (X-Ray) Detector for Tokamak Plasma Diagnostics

10x10 cm² GEM installed since 2013


GEMPIX (GEM + Timepix)

Plasma images (GEM) measured in 2015: Movie of 200 images per sec

GEMPIX for Fusion: 2015 measurement campaign:

F. Murtas, D.Pacella, G. Claps

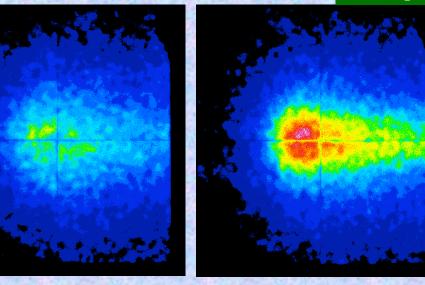
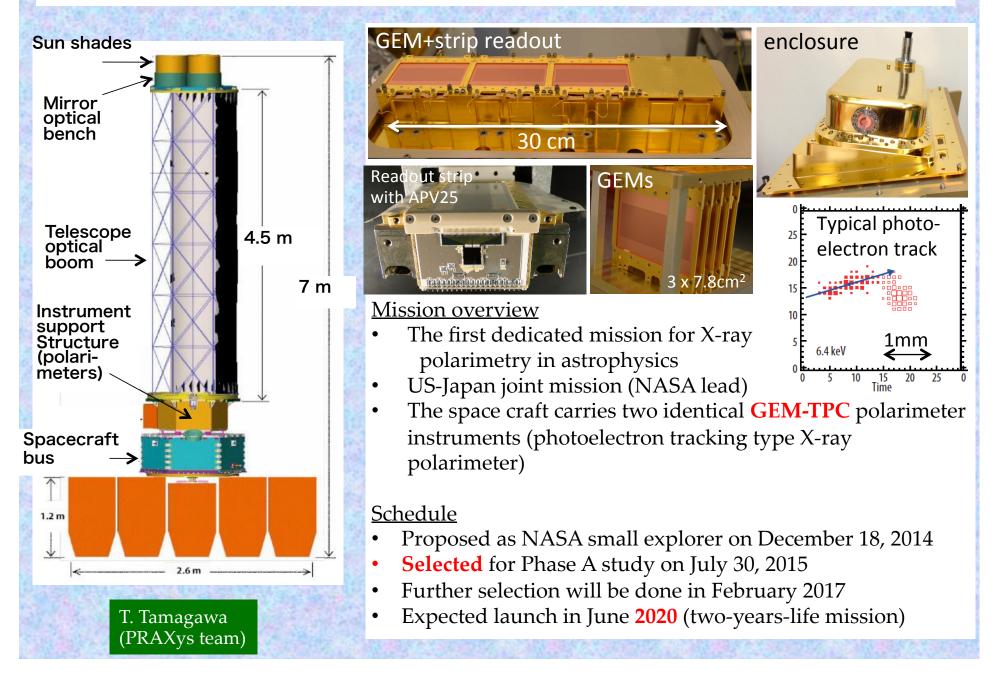
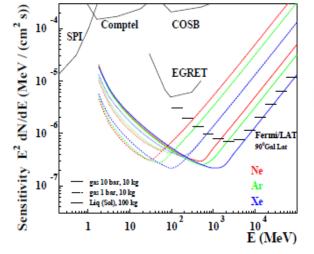
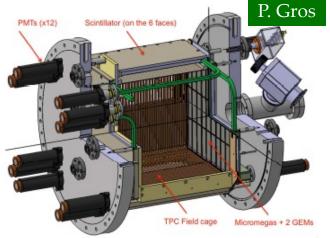



Image of KSTAR Plasma with spectroscopy measurements

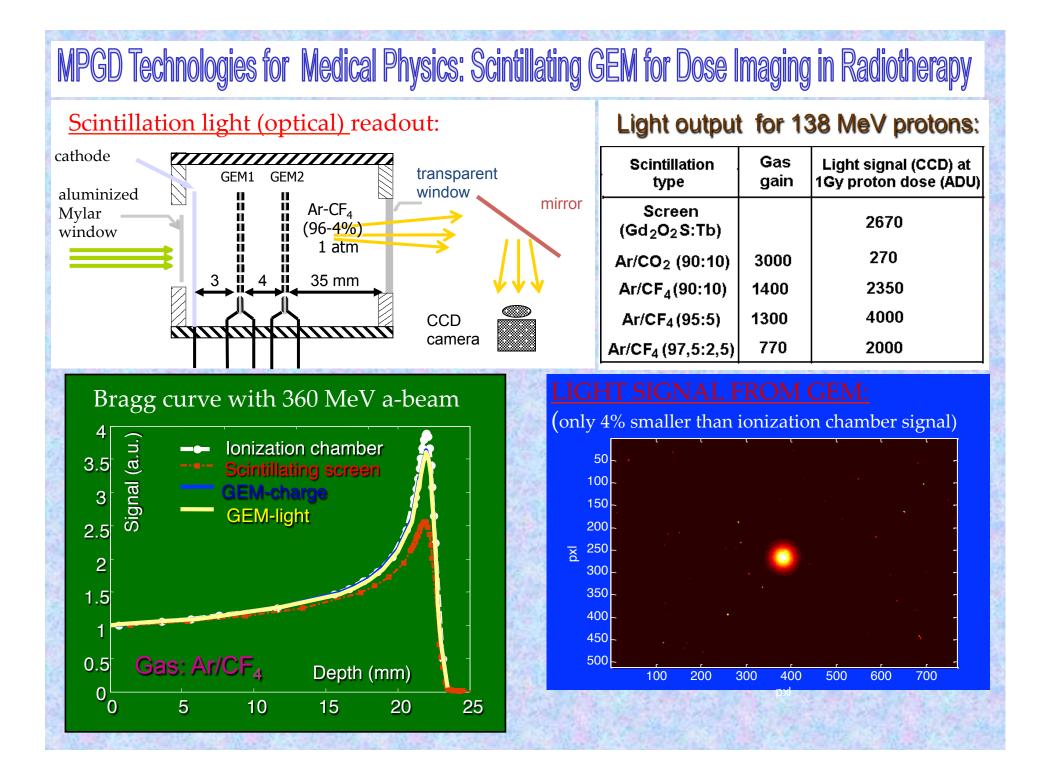
The PRAXys Project: Polarimetry for Relativistic Astrophysical X-Ray Sources

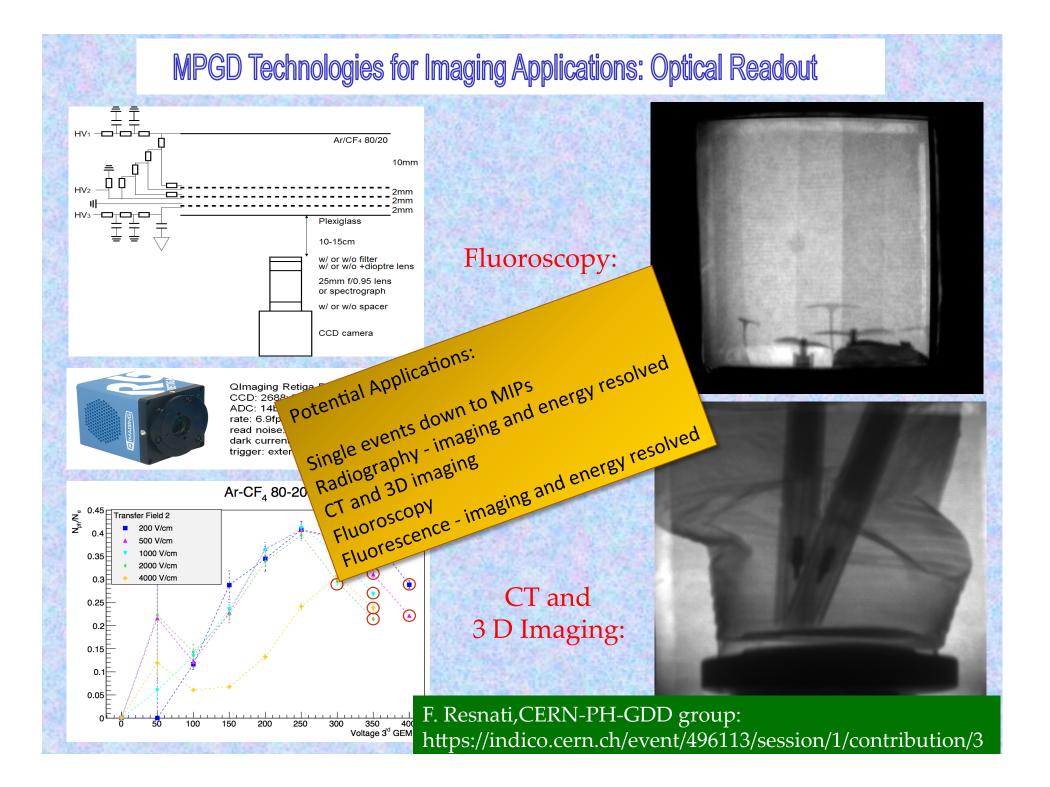


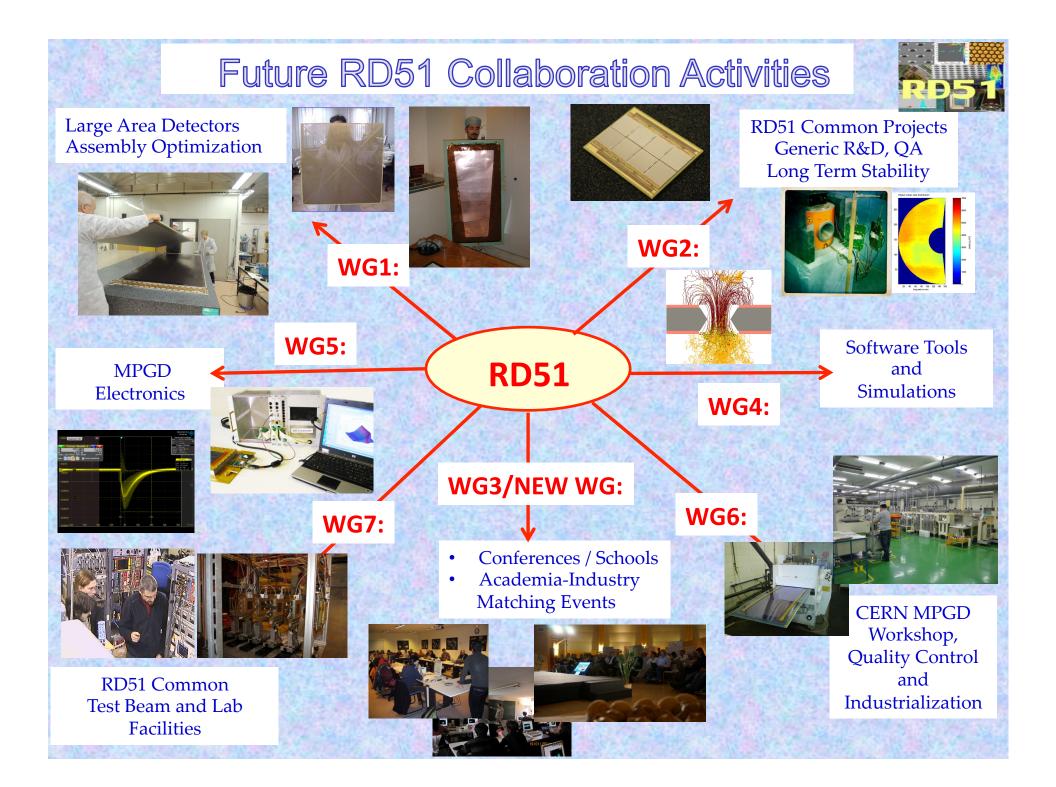
MPGDs Technologies for MeV-GeV Polarimeter and y-Ray Telescope


HARPO: TPC as a γ -ray Telescope and Polarimeter:

High-pressure TPC with MM:


- ➢ Fill 1-100 MeV sensitivity gap
- > Improve the angular resolution
- Derive g-polarization from the azimuthal angle derived from e- and e+ tracks




HARPO demonstrator:

γ-Ray Imaging using μPIC+TPC: Fine 3D-electron tracking gives φ , and well-defined PSF (1-2°) **30cm-cubic Gaseous Time Projection Chamber** --- tracking of recoil electron ---Conventional method Electron Tracking method SPD 30cm ETCO Gaseous TPC ARM u-PIC ~1 m A. Ochi SMILE-II: Scintillator Array x (mm)

CERN Courier October 2015

Detector R&D

CERN Courier October 2015

RD51 and the rise of micro-pattern gas detectors

CERN Courier (5 pages) Volume, October 2015

Since its foundation, the RD51 collaboration has provided important stimulus for the development of MPGDs.

Improvements in detector technology often come from capitalizing on industrial progress. Over the past two decades, advances in photolithography, microelectronics and printed circuits have opened the way for the production of micro-structured gas-amplification devices. By 2008, interest in the development and use of the novel micro-pattern gaseous detector (MPGD) technologies led to the establishment at CERN of the RD51 collaboration. Originally created for a five-year term, RD51 was later prolonged for another five years beyond 2013. While many of the MPGD technologies were introduced before RD51 was founded (figure 1), with more techniques becoming available or affordable, new detection concepts are still being introduced, and existing ones are substantially improved.

In the late 1980s, the development of the micro-strip gas chamber (MSGC) created great interest because of its intrinsic ratecapability, which was orders of magnitude higher than in wire chambers, and its position resolution of a few tens of micrometres at particle fluxes exceeding about 1 MHz/mm². Developed for projects at high-luminosity colliders, MSGCs promised to fill a gap between the high-performance but expensive solid-state detectors, and cheap but rate-limited traditional wire chambers. However, detailed studies of their long-term behaviour at high rates and in hadron beams revealed two possible weaknesses of the MSGC technology: the formation of deposits on the electrodes, affecting gain and performance ("ageing effects"), and spark-induced damage to electrodes in the presence of highly ionizing particles.

These initial ideas have since led to more robust MPGD structures, in general using modern photolithographic processes on thin insulating supports. In particular, ease of manufacturing, operational stability and superior performances for charged-particle tracking, muon detection and triggering have given rise to two main designs: the gas electron-multiplier (GEM) and the micromesh gaseous structure (Micromegas). By using a pitch size of a few hundred micrometres, both devices exhibit intrinsic high-rate capability (> 1 MHz/mm²), excellent spatial and multi-track resolution (around 30 μ m and 500 μ m, respectively), and time resolution for single photoelectrons in the sub-nanosecond range.

Coupling the microelectronics industry and advanced PCB technology has been important for the development of gas detectors with increasingly smaller pitch size. An elegant example is the use of a CMOS pixel ASIC, assembled directly below the GEM or Micromegas amplification structure. Modern "wafer post-processing technology" allows for the integration of a Micromegas grid directly on top of a Medipix or Timepix chip, thus forming

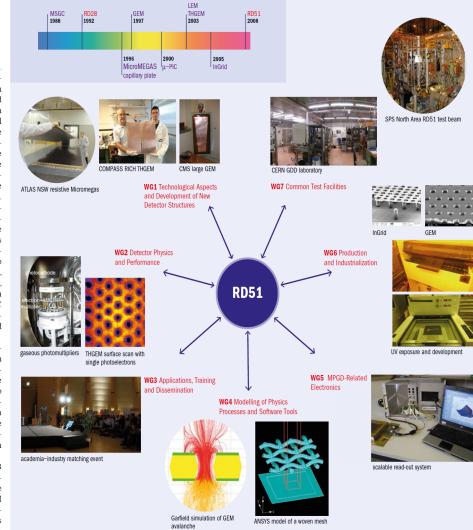


Fig.1. The seven working groups of RD51, with illustrations of just a few examples of the different kinds of work involved. Top left: the 20-year pre-history of RD51. (Image credits: RD51 Collaboration.)

integrated read-out of a gaseous detector (InGrid). Using this approach, MPGD-based detectors can reach the level of integration, compactness and resolving power typical of solid-state pixel devices. For applications requiring imaging detectors with largearea coverage and moderate spatial resolution (e.g. ring-imaging Cherenkov (RICH) counters), coarser macro-patterned structures offer an interesting economic solution with relatively low mass and easy construction – thanks to the intrinsic robustness of the PCB electrodes. Such detectors are the thick GEM (THGEM), large electron multiplier (LEM), patterned resistive thick GEM (RETGEM) and the resistive-plate WELL (RPWELL).

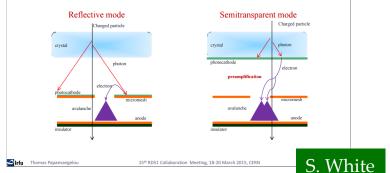
RD51 and its working groups

The main objective of RD51 is to advance the technological development and application of MPGDs. While a number of activities have emerged related to the LHC upgrade, most importantly, RD51 serves as an access point to MPGD "know-how" for the worldwide community – a platform for sharing information, results and experience – and optimizes the cost of R&D through the sharing of resources and the creation of common projects and infrastructure. All partners are already pursuing either basic- or applicationoriented R&D involving MPGD concepts. Figure 1 shows the organization of seven Working Groups (WG) that cover all of the relevant aspects of MPGD-related R&D.

WG1 Technological Aspects and Development of New Detector Structures. The objectives of WG1 are to improve the performance of existing detector structures, optimize fabrication methods, and develop new multiplier geometries and techniques. One of the most prominent activities is the development of large-area GEM, Micromegas and THGEM detectors. Only one decade ago, the largest MPGDs were around 40 × 40 cm², limited by existing tools and materials. A big step towards the industrial manufacturing of MPGDs with a size around a square metre came with new fabrication methods - the single-mask GEM, "bulk" Micromegas, and the novel Micromegas construction scheme with a "floating mesh". While in "bulk" Micromegas, the metallic mesh is integrated into the PCB read-out, in the "floating-mesh" scheme it is integrated in the panel containing drift electrodes and placed on pillars when the chamber is closed. The single-mask GEM technique overcomes the cumbersome practice of alignment of two masks between top and bottom films, which limits the achievable lateral size to 50 cm. This technology, together with the novel "self-stretching technique" for assembling GEMs without glue and spacers, simplifies the fabrication process to such an extent that, especially for large-volume production, the cost per unit area drops by orders of magnitude.

MPGD conferences & RD51CM

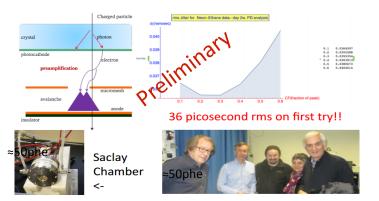
Summary of the RD51 Achievements (2008 - 2013)


- Consolidation of the Collaboration and MPGD Community Integration (> 80 institutes, 450 members);
- Major progress in MPGD Technologies: Large area GEM (single mask), Micromegas (resistive) and THGEM; picked up by experiments, including LHC upgrades;
- Secured future of the MPGD Technologies development through the TE MPE workshop upgrade and FP7 AIDA contribution
- Contacts with industry for large volume production; <u>MPGD industrialization</u> and first industrial runs
- Major improvement to the MPGD simulation software framework for small-scale structures for applications;
- Development of common, scalable readout electronics (SRS); many developers and > 50 user groups; Production (PRISMA company and availability through CERN store); Industrialization (re-design of SRS in ATCA in EISYS)
- ➢ Infrastructure for common RD51 test beam and facilities (> 20 user groups);

Future MPGD Trends: Generic R&D, Examples of New Ideas

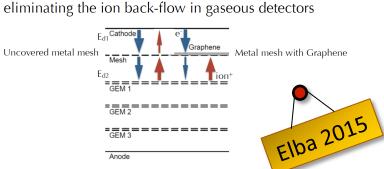
FAST-TIMING MPGDs on MM concept:

Primary ionization: photoelectrons

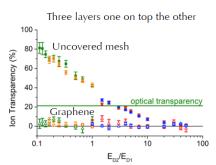

- $\succ~$ Cherenkov light produced by charged particles crossing a MgF_{2} crystal
- Photoelectrons extracted from a photocathode (CsI)
- ightarrow Simultaneous & well localized ionization of the gas

MicroMegas based:

(initial tests March/April 2015)


Ne-Ethane(10%)-200 micron drift+50micron Micro Bulk

Convert single-photoelectron time jitter of a few hundred picoseconds into an incidentparticle timing response of the order of 50 ps Study of charge-transfer properties through graphene for gas detector applications:


Build a suspended Graphene layer without defects transparent to the drifting electrons and opaque to ions

The idea

It can also be used as protective layer (e.g. photocathodes) and to enhance secondary electron emission from materials

The measurements

Single Graphene layer: dominated by defects Triple Graphene layer: ion transparency drastically reduced, but also electrons do not tunnel easily

F. Resnati

Solutions:

1) increase the energy of the electrons,

i.e. different gases, larger fields (GEM holes)

2) improve the procedure to transfer the Graphene on the metal mesh to avoid ruptures of the layer

WG4: MPGD Simulation Tools

- > Focus on providing techniques for calculating electron transport in small-scale structures
- > The main difference with traditional gas-based detectors is that the electrode scale
 - (~ 10 $\mu m)$ is comparable to the collision mean free path

Microscopic Tracking (Development and Maintenance of Garfield++): Garfield++ is a collection of classes for the detailed simulation of small-scale detectors.

Garfield++ contains:

- electron and photon transport using cross sections provided by Magboltz
- ionisation processes in gases, provided by Heed and MIP
- ionisation and electron transport in semi-conductors
- field calculations from finite elements, boundary elements, analytic methods

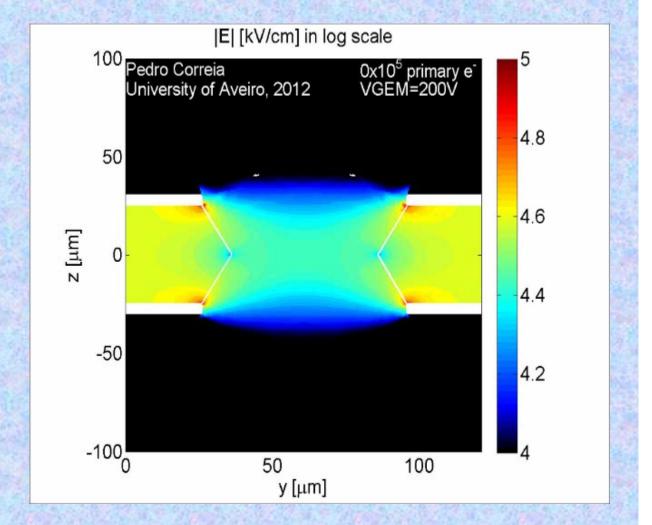
Simulation Improvements:

→ Transport:

- ion mobility and diffusion, measurement and modelling
- Magboltz cross sections (Ar, Xe, He, Ne; GeH₄, SiH₄, C₂H₂F₄) are frequently updated in collaboration with LXCAT (<u>http://www.lxcat.laplace.univ-tlse.fr</u>)
- LX

- e-ion recombination process in Xe
- thermal motion

\rightarrow Photons:


- update in UV emission
- inclusion of IR production
- photon trapping and resulting excitation transport
- photon absorption in the gas (gas feedback)
- photon absorption in and electron emission from walls (feedback)
- photo cathodes

WG4: GEM Charging-Up Effects Simulation

Electric Field Intensity during the charging-up process:

each iteration correspond to the number of primary electrons that already reached to the hole

- ANSYS: field model
- Magboltz 9.0.1: relevant cross sections of electronmatter interactions
- Garfeld++: simulate electron avalanches

Charging effects are much smaller after (100 − 150) *10⁵ avalanches → GEM gas gain stabilizes

WG5: The RD51 Scalable Readout System (SRS) for MPGD

RD51 Development / Industrialization: portable multi-channel readout system (2009-2012)

- Scalable readout architecture: from ~ 100 channels up to very large LHC systems (> 100 k ch.)
- Project specific part (ASIC) + common acquisition hardware and software

WG6: MPGD Technology Industrialization

Technology Industrialization → transfer "know-how" from CERN workshop to industrial partners

GEM Technology (contacts):

- Mecharonix (Korea, Seoul)
- Tech-ETCH (USA, Boston)
- Scienergy (Japan, Tokyo)
- > TECHTRA (Poland, Wroclaw

THGEM Technology (contacts):

- ► ELTOS S.p.A. (Italy),
- > PRINT ELECTRONICS

GEM Licenses signed by:

- ✓ Mecharonics, 21/05/2013
- ✓ TECH-Etch, 06/03/2013
- ✓ China IAE, 10/01/2012
- ✓ SciEnergy, 06/04/2009
- ✓ Techtra, 09/02/2009
- ✓ CDT, 25/08/2008
- ✓ PGE, 09/07/2007

MicroMegas Technology(contacts):

- ► ELTOS S.p.A. (Italy)
- TRIANGLE LABS(USA, Nevada)
- SOMACIS (Italy, Castelfidarco)
- ELVIA (France, CHOLET)

GEM Industrialization Status (June 2015):

TECH-ETCH

- Single Mask process fully understood. Many 10cm x 10cm produced and characterized.
- 40cm x 40cm GEM successfully produced
- CMS GE1/1 size of 1m x 0.5m started

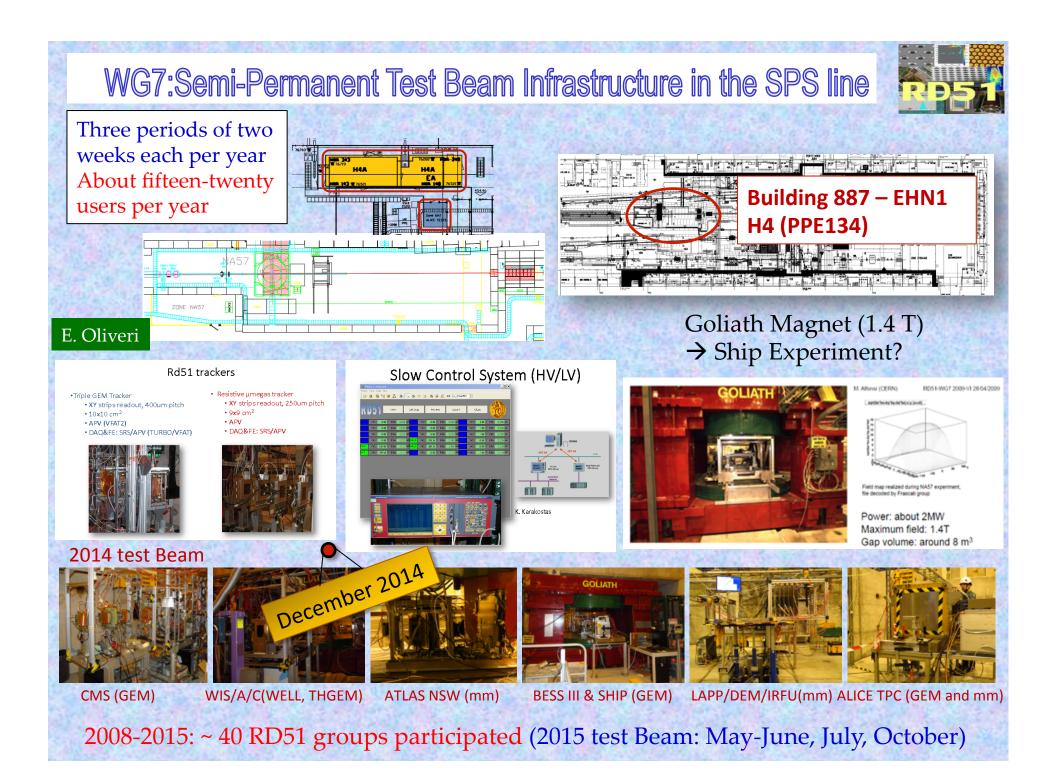
TECHTRA

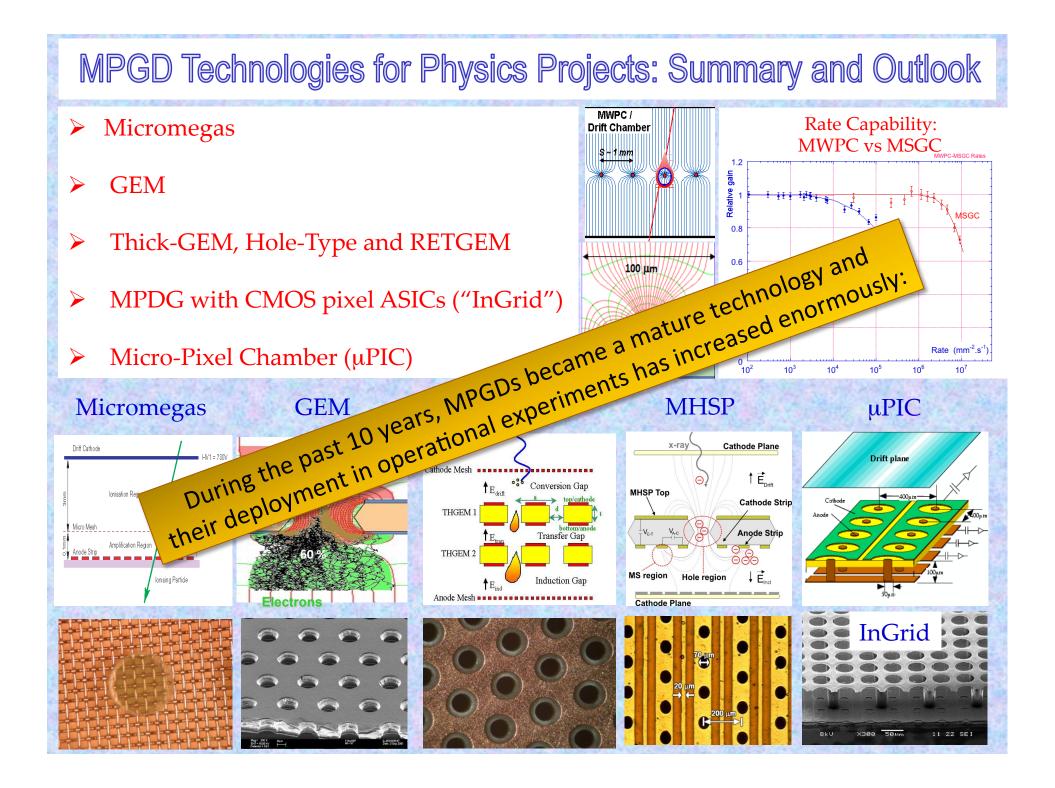
- Production Line Operational
- Stable process for 10cm x 10cm
- Single Mask process completely understood 10cm x 10cm produced
 30cm x30cm Single Mask Produced

MECHARONICS

- 10cm x 10cm double mask produced and tested
- 30cm x 30cm double mask under evaluation @ CERN
- •CMS GE1/1 size of 1m x 0.5m started

Micromegas Industrialization Status (June 2015):


ELVIA


- Bulk Micromegas detectors are routinely produced with sizes up to 50cm x 50 cm.
- Contract for ATLAS NSW module-0 signed
- •Tendering process for full production ongoing

ELTOS

- Many small size bulk Micromegas detectors have been produced.
- Contract for ATLAS NSW module-0 signed
- •Tendering process for full production ongoing

ATLAS NSW upgrade → will first detector massproduced in industry using a large high-granularity Micromegas: det. area ~1300 m2 divided into 2 m x 0.5 m2 units

2016 IEEE Nuclear Science Symposium & Medical Imaging Conference

23rd International Symposium on Room-Temperature X-Ray and Gamma-Ray Detectors

Palais des Congrès, **Strasbourg**, France 29 October - 6 November 2016

Radiation detectors and instrumentation and their application in:

 Particle and nuclear physics, astrophysics, large scale facilities, security, energy, and environmental sciences

 Medical sciences, including image reconstruction, image/data analysis, radiation therapy, and dosimetry

Scientific sessions, industrial exhibition, short courses, special focus workshops

General Chair

Maxim Titov CEA Saclay, DSM/IRFU email: nssmic2016@ieee.org

NPSS NUCLEAR & PLASMA SCIENCES SOCIET

http://www.nss-mic.org/2016

Abstract Submission

Deadline 3 May 2016